In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its M...Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. Then the classification of Blaschke isoparametric hypersurfaces is natural and interesting in the MSbius geometry of submanifolds. When n = 4, the corresponding classification theorem was given by the authors. In this paper, we are able to complete the corresponding classification for n = 5. In particular, we shall prove that all the Blaschke isoparametric hypersurfaces in S^5 with more than two distinct Blaschke eigenvalues are necessarily Mobius isoparametric.展开更多
For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn...For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn with constant Blaschke eigenvalues. In this paper, we are able to classify all immersed hypersurfaces in S^m+1 with vanishing MSbius form and constant Blaschke eigenvalues, in case (1) x has exact two distinct Blaschke eigenvalues, or (2) m = 3. With these classifications, some interesting examples are also presented.展开更多
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
文摘Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. Then the classification of Blaschke isoparametric hypersurfaces is natural and interesting in the MSbius geometry of submanifolds. When n = 4, the corresponding classification theorem was given by the authors. In this paper, we are able to complete the corresponding classification for n = 5. In particular, we shall prove that all the Blaschke isoparametric hypersurfaces in S^5 with more than two distinct Blaschke eigenvalues are necessarily Mobius isoparametric.
文摘For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn with constant Blaschke eigenvalues. In this paper, we are able to classify all immersed hypersurfaces in S^m+1 with vanishing MSbius form and constant Blaschke eigenvalues, in case (1) x has exact two distinct Blaschke eigenvalues, or (2) m = 3. With these classifications, some interesting examples are also presented.