Livestock wastewater has been a major contributor to Chinese cultural eutrophication of surface waters. Constructed wetlands are under study as a best management practice to treat wastewater from dairy and swine opera...Livestock wastewater has been a major contributor to Chinese cultural eutrophication of surface waters. Constructed wetlands are under study as a best management practice to treat wastewater from dairy and swine operations, but the removal efficiency of pollutants is relatively low. Enhancing the treatment efficiency of livestock wastewater by effluent recirculation was investigated in a pilot-scale vertical-flow constructed wetland. The wetland system was composed of downflow and upflow stages, on which narrow-leaf Phragmites communis and common reed Phragraites Typhia are planted, respectively; each stage has a dimension of 4 m^2 (2 m × 2 m). Wastewater from facultative pond was fed into the system intermittently at a flow rate of 0.4 m^3/d. Recirculation rates of 0, 25%, 50%, 100% and 150% were adopted to evaluate the effect of the recirculation rate on pollutants removal. It shows that with effluent recirculation the average removal efficiencies of NH4-N, biological oxygen demand (BOD5) and suspended solids(SS) obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, dissolved oxygen(DO) and oxidation-reduction potential(ORP) of inflow and outflow reveal that the adoption of effluent recirculation is benefi- cial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R2 〉0.93) are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by gradually enhanced nitrification process. When recirculation rate is kept constant 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.展开更多
文章以餐厨垃圾和稻草为原料,研究了不同进料负荷和回流对半连续式两相厌氧消化产气及系统能量平衡的影响。试验结果表明,不回流的酸化相(A1)和甲烷相离心液回流的酸化相(A2)的产酸量随着负荷的提高而显著增加,其对应的甲烷相(R1,R2)的...文章以餐厨垃圾和稻草为原料,研究了不同进料负荷和回流对半连续式两相厌氧消化产气及系统能量平衡的影响。试验结果表明,不回流的酸化相(A1)和甲烷相离心液回流的酸化相(A2)的产酸量随着负荷的提高而显著增加,其对应的甲烷相(R1,R2)的日产甲烷量随着进料负荷的提高也逐渐增大。在酸化相中,当进料负荷为10 g VS·L-1d-1,水力停留时间为10天时,A1和A2的产酸量同时达到最大,分别为30583 mg·L-1和47559 mg·L-1,A2比A1的产酸量提高了55%。在甲烷相中,当负荷为4 g VS·L-1d-1时,R1,R2的单位VS产气率达到最大,分别为0.43 L·g-1VS和0.51 L·g-1VS,R2比R1单位VS日产甲烷率提高了18.6%。展开更多
An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicat...An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicated that AF was reliable in treating diluted CGW,while its efficiency and stability were seriously reduced when directly treating raw CGW.However,its performance could be greatly enhanced by effluent recirculation.Under optimal effluent recirculation of 0.5 to the influent,concentrations of chemical oxygen demand(COD) and total phenol in the effluent could reach as low as 234.0 and 14.2 mg/L,respectively.Also,the rate of methane production reached 169.0 m L CH_4/L/day.Though CGW seemed to restrain the growth of anaerobic microorganisms,especially methanogens,the inhibition was temporary and reversible,and anaerobic bacteria presented strong tolerance.The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater(GW).However,the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication.By analysis using the Haldane model,it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters,but only suitable effluent recirculation could result in high methanogenic activity.展开更多
文摘Livestock wastewater has been a major contributor to Chinese cultural eutrophication of surface waters. Constructed wetlands are under study as a best management practice to treat wastewater from dairy and swine operations, but the removal efficiency of pollutants is relatively low. Enhancing the treatment efficiency of livestock wastewater by effluent recirculation was investigated in a pilot-scale vertical-flow constructed wetland. The wetland system was composed of downflow and upflow stages, on which narrow-leaf Phragmites communis and common reed Phragraites Typhia are planted, respectively; each stage has a dimension of 4 m^2 (2 m × 2 m). Wastewater from facultative pond was fed into the system intermittently at a flow rate of 0.4 m^3/d. Recirculation rates of 0, 25%, 50%, 100% and 150% were adopted to evaluate the effect of the recirculation rate on pollutants removal. It shows that with effluent recirculation the average removal efficiencies of NH4-N, biological oxygen demand (BOD5) and suspended solids(SS) obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, dissolved oxygen(DO) and oxidation-reduction potential(ORP) of inflow and outflow reveal that the adoption of effluent recirculation is benefi- cial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R2 〉0.93) are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by gradually enhanced nitrification process. When recirculation rate is kept constant 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.
文摘文章以餐厨垃圾和稻草为原料,研究了不同进料负荷和回流对半连续式两相厌氧消化产气及系统能量平衡的影响。试验结果表明,不回流的酸化相(A1)和甲烷相离心液回流的酸化相(A2)的产酸量随着负荷的提高而显著增加,其对应的甲烷相(R1,R2)的日产甲烷量随着进料负荷的提高也逐渐增大。在酸化相中,当进料负荷为10 g VS·L-1d-1,水力停留时间为10天时,A1和A2的产酸量同时达到最大,分别为30583 mg·L-1和47559 mg·L-1,A2比A1的产酸量提高了55%。在甲烷相中,当负荷为4 g VS·L-1d-1时,R1,R2的单位VS产气率达到最大,分别为0.43 L·g-1VS和0.51 L·g-1VS,R2比R1单位VS日产甲烷率提高了18.6%。
文摘An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicated that AF was reliable in treating diluted CGW,while its efficiency and stability were seriously reduced when directly treating raw CGW.However,its performance could be greatly enhanced by effluent recirculation.Under optimal effluent recirculation of 0.5 to the influent,concentrations of chemical oxygen demand(COD) and total phenol in the effluent could reach as low as 234.0 and 14.2 mg/L,respectively.Also,the rate of methane production reached 169.0 m L CH_4/L/day.Though CGW seemed to restrain the growth of anaerobic microorganisms,especially methanogens,the inhibition was temporary and reversible,and anaerobic bacteria presented strong tolerance.The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater(GW).However,the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication.By analysis using the Haldane model,it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters,but only suitable effluent recirculation could result in high methanogenic activity.