We have analyzed the effective oxide thickness (EOT) of the dielectric material for which we have optimum performance and the output characteristics of the silicon nanowire transistors by replacing the traditional S...We have analyzed the effective oxide thickness (EOT) of the dielectric material for which we have optimum performance and the output characteristics of the silicon nanowire transistors by replacing the traditional Si02 gate insulator with a material that has a much higher dielectric constant (high-k) gate, materials like Si3N4, Al2O3, Y2O3 and HfO2. We have also analyzed the channel conductance, the effect of a change in thickness, the average velocity of the charge carrier and the conductance efficiency in order to study the performance of silicon nanowire transistors in the nanometer region. The analysis was performed using the Fettoy, a numerical simulator for ballistic nanowire transistors using a simple top of the barrier (Natori) approach, which is composed of several matlab scripts. Our results show that hafnium oxide (HfO2) gate insulator material provides good thermal stability, a high recrystallization temperature and better interface qualities when compared with other gate insulator materials; also the effective oxide thickness of lifO2 is found to be 0.4 nm.展开更多
Impacts of effective oxide thickness on a symmetric double-gate MOSFET with 9-nm gate length are studied, using full quantum simulation. The simulations are based on a self-consistent solution of the two-dimensional ...Impacts of effective oxide thickness on a symmetric double-gate MOSFET with 9-nm gate length are studied, using full quantum simulation. The simulations are based on a self-consistent solution of the two-dimensional (2D) Poisson equation and the Schr6dinger equation within the non-equilibrium Green's function formalism. Oxide thickness and gate dielectric are investigated in terms of drain current, on-off current ratio, off current, sub-threshold swing, drain induced barrier lowering, transconductance, drain conductance, and voltage. Simulation results illustrate that we can improve the device performance by proper selection of the effective oxide thickness.展开更多
A simple analytical model has been developed to study quantum mechanical effects (QME) in a germanium substrate MOSFET (metal oxide semiconductor field effect transistor), which includes gate oxide tunneling consi...A simple analytical model has been developed to study quantum mechanical effects (QME) in a germanium substrate MOSFET (metal oxide semiconductor field effect transistor), which includes gate oxide tunneling considering the energy quantization effects in the substrate. Some alternate high dielectric constant materials to reduce the tunneling have also been studied. By comparing with the numerically reported results, the results match well with the existing reported work.展开更多
基金supported by the Council of Scientific & Industrial Research(CSIR),India under the SRF scheme(No.08/237(0005)/2012-EMR-I)
文摘We have analyzed the effective oxide thickness (EOT) of the dielectric material for which we have optimum performance and the output characteristics of the silicon nanowire transistors by replacing the traditional Si02 gate insulator with a material that has a much higher dielectric constant (high-k) gate, materials like Si3N4, Al2O3, Y2O3 and HfO2. We have also analyzed the channel conductance, the effect of a change in thickness, the average velocity of the charge carrier and the conductance efficiency in order to study the performance of silicon nanowire transistors in the nanometer region. The analysis was performed using the Fettoy, a numerical simulator for ballistic nanowire transistors using a simple top of the barrier (Natori) approach, which is composed of several matlab scripts. Our results show that hafnium oxide (HfO2) gate insulator material provides good thermal stability, a high recrystallization temperature and better interface qualities when compared with other gate insulator materials; also the effective oxide thickness of lifO2 is found to be 0.4 nm.
文摘Impacts of effective oxide thickness on a symmetric double-gate MOSFET with 9-nm gate length are studied, using full quantum simulation. The simulations are based on a self-consistent solution of the two-dimensional (2D) Poisson equation and the Schr6dinger equation within the non-equilibrium Green's function formalism. Oxide thickness and gate dielectric are investigated in terms of drain current, on-off current ratio, off current, sub-threshold swing, drain induced barrier lowering, transconductance, drain conductance, and voltage. Simulation results illustrate that we can improve the device performance by proper selection of the effective oxide thickness.
文摘A simple analytical model has been developed to study quantum mechanical effects (QME) in a germanium substrate MOSFET (metal oxide semiconductor field effect transistor), which includes gate oxide tunneling considering the energy quantization effects in the substrate. Some alternate high dielectric constant materials to reduce the tunneling have also been studied. By comparing with the numerically reported results, the results match well with the existing reported work.