This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain para...This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain parameters, this paper treats uncertainties as non-probability intervals. Based on the iterative process of classical effective independence method, the proposed study considers the eliminating steps with uncertain cases. Therefore, this method with Fisher information matrix is extended to interval numbers, which could conform to actual engineering. As long as we know the bounds of uncertainties, the interval Fisher information matrix could be obtained conveniently by interval analysis technology. Moreover, due to the definition and calculation of the interval relationship, the possibilities of eliminating candidate sensors in each iterative process and the final layout of sensor placement are both presented in this paper. Finally, two numerical examples, including a five-storey shear structure and a truss structure are proposed respectively in this paper. Compared with Monte Carlo simulation, both of them can indicate the veracity of the interval effective independence method.展开更多
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ...Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11502278)
文摘This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain parameters, this paper treats uncertainties as non-probability intervals. Based on the iterative process of classical effective independence method, the proposed study considers the eliminating steps with uncertain cases. Therefore, this method with Fisher information matrix is extended to interval numbers, which could conform to actual engineering. As long as we know the bounds of uncertainties, the interval Fisher information matrix could be obtained conveniently by interval analysis technology. Moreover, due to the definition and calculation of the interval relationship, the possibilities of eliminating candidate sensors in each iterative process and the final layout of sensor placement are both presented in this paper. Finally, two numerical examples, including a five-storey shear structure and a truss structure are proposed respectively in this paper. Compared with Monte Carlo simulation, both of them can indicate the veracity of the interval effective independence method.
基金supported by the Laboratory Directed Research&Development(LDRD)program at the Los Alamos National Laboratory(LANL)(Grant No.20220019DR).
文摘Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.