A numerical model was proposed to describe the modulus variation of mortar exposed to external sulfate attack and the effectivity was verified by experiments. The model joints statistical evolution of microcracks to e...A numerical model was proposed to describe the modulus variation of mortar exposed to external sulfate attack and the effectivity was verified by experiments. The model joints statistical evolution of microcracks to effective elastic modulus with microcracks and is applied to predict the damage degree of mortar attacked by sulfate. The experimental results show that the model can predict the modulus variation development of the specimen and the microcraks density. The elastic modulus values calculated by the model are consistent with that measured by experiments. The model focuses on nucleation of microcracks and finds that the theoretical results of microcracks number density show a linear growth over time in mortar. Compared with other sulfate attack damage model, this model provides a more suitable damage evolution equation that can be used to analyze the chemically assisted damage.展开更多
基金Funded by the National Key R&D Program of China(No.2017YFB0309904)the 973 Program of China(No.2015CB655100)
文摘A numerical model was proposed to describe the modulus variation of mortar exposed to external sulfate attack and the effectivity was verified by experiments. The model joints statistical evolution of microcracks to effective elastic modulus with microcracks and is applied to predict the damage degree of mortar attacked by sulfate. The experimental results show that the model can predict the modulus variation development of the specimen and the microcraks density. The elastic modulus values calculated by the model are consistent with that measured by experiments. The model focuses on nucleation of microcracks and finds that the theoretical results of microcracks number density show a linear growth over time in mortar. Compared with other sulfate attack damage model, this model provides a more suitable damage evolution equation that can be used to analyze the chemically assisted damage.