We built a three-dimensional model to simulate the disturbance of the stress field near the reverse fault in Zhaziao, Leyi Township owing to hydraulic fracturing. The pore pressure, and shear and normal stresses durin...We built a three-dimensional model to simulate the disturbance of the stress field near the reverse fault in Zhaziao, Leyi Township owing to hydraulic fracturing. The pore pressure, and shear and normal stresses during fracturing are analyzed in detail. Input rock mechanics parameters are taken from laboratory test data of shale samples from the study area. The simulation results suggest that after 16 hours of fluid injection, the pore-pressure variation can activate the reverse fault, i.e., we observe reverse slip, and the shear stress and displacement on the fault plane increase with time. The biggest stress–strain change occurs after one hour of fluid injection and the yield point appears about 0.5 h after injection. To observe the stress evolution in each section, the normal displacement on the boundary is constrained and the fault plane is set as nonpermeable. Thus, the sliding is limited and the shear displacement is only in the scale of millimeters, and the calculated magnitude of the induced earthquakes is between Mw-3.5 and Mw-0.2. The simulation results suggest that fluid water injection results in inhomogeneous fracturing. The main ruptured areas are around the injection positions, whereas the extent of rupturing and cracks in other areas are relatively small. Nevertheless, nonnegligible fault activation is recorded. Sensitivity analysis of the key parameters suggests that the pore pressure is most sensitive to the maximum unbalanced force and the internal friction angle strongly affects the fault slip. Finally, the comparison between the effective normal stress and the maximum and minimum principal stresses on the fault plane explains the fault instability, i.e., the Mohr circle moves towards the left with decreasing radius reduces and intersects the critical slip envelope, and causes the fault to slip.展开更多
Following a quasi-dynamic scheme proposed by Minear and Toksoz (1970), thermal structures of subduction zonesfor different models by finite element method (FEM) were calculated. Density distribution and p-wave anomaly...Following a quasi-dynamic scheme proposed by Minear and Toksoz (1970), thermal structures of subduction zonesfor different models by finite element method (FEM) were calculated. Density distribution and p-wave anomaly ofsubduction zones were calculated at the same time. Comparing with seismological evidences and results of laboratories. it is proposed that earthquakes occurred below 400 km depth are probably controlled by anti-crackmechanism.展开更多
Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present ...Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present development status. Post-earthquake investigation has found that the existence of topography caused more serious earthquake damage. The actual seismographs also recorded the topographic amplification effect of 6 to 7 times and even more than 10 times. Numerical simulation is an important technique to study topographic effect, which complements the lack of observed records. However researches on 3-D topographic effect are not enough and need to be studied deeper. To find the main influence factors and the quantitative relationship between topography and ground motion are required very urgently. Obviously the achievements not only can be applied in the earthquake resistant design, but also can provide the quantitative pre-earthquake disaster prediction and quantitative post-earthquake disaster evaluation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41604050 and 41774192)
文摘We built a three-dimensional model to simulate the disturbance of the stress field near the reverse fault in Zhaziao, Leyi Township owing to hydraulic fracturing. The pore pressure, and shear and normal stresses during fracturing are analyzed in detail. Input rock mechanics parameters are taken from laboratory test data of shale samples from the study area. The simulation results suggest that after 16 hours of fluid injection, the pore-pressure variation can activate the reverse fault, i.e., we observe reverse slip, and the shear stress and displacement on the fault plane increase with time. The biggest stress–strain change occurs after one hour of fluid injection and the yield point appears about 0.5 h after injection. To observe the stress evolution in each section, the normal displacement on the boundary is constrained and the fault plane is set as nonpermeable. Thus, the sliding is limited and the shear displacement is only in the scale of millimeters, and the calculated magnitude of the induced earthquakes is between Mw-3.5 and Mw-0.2. The simulation results suggest that fluid water injection results in inhomogeneous fracturing. The main ruptured areas are around the injection positions, whereas the extent of rupturing and cracks in other areas are relatively small. Nevertheless, nonnegligible fault activation is recorded. Sensitivity analysis of the key parameters suggests that the pore pressure is most sensitive to the maximum unbalanced force and the internal friction angle strongly affects the fault slip. Finally, the comparison between the effective normal stress and the maximum and minimum principal stresses on the fault plane explains the fault instability, i.e., the Mohr circle moves towards the left with decreasing radius reduces and intersects the critical slip envelope, and causes the fault to slip.
文摘Following a quasi-dynamic scheme proposed by Minear and Toksoz (1970), thermal structures of subduction zonesfor different models by finite element method (FEM) were calculated. Density distribution and p-wave anomaly ofsubduction zones were calculated at the same time. Comparing with seismological evidences and results of laboratories. it is proposed that earthquakes occurred below 400 km depth are probably controlled by anti-crackmechanism.
基金supported by the National Natural Science Foundation of China (No. 41774064)
文摘Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present development status. Post-earthquake investigation has found that the existence of topography caused more serious earthquake damage. The actual seismographs also recorded the topographic amplification effect of 6 to 7 times and even more than 10 times. Numerical simulation is an important technique to study topographic effect, which complements the lack of observed records. However researches on 3-D topographic effect are not enough and need to be studied deeper. To find the main influence factors and the quantitative relationship between topography and ground motion are required very urgently. Obviously the achievements not only can be applied in the earthquake resistant design, but also can provide the quantitative pre-earthquake disaster prediction and quantitative post-earthquake disaster evaluation.