Monsoon seasons, occasionally also known as wet seasons or trade-wind littoral seasons, are found in the regions where there is a complete seasonal reversal of the prevailing surface winds. Accompanying these shifts i...Monsoon seasons, occasionally also known as wet seasons or trade-wind littoral seasons, are found in the regions where there is a complete seasonal reversal of the prevailing surface winds. Accompanying these shifts in the prevailing surface winds are modulations in rainfall activity. Given the fact that our knowledge of the monsoons is mainly based on the interpretation of the mean values of precipitation, cloudiness and winds;relationships between earth’s rotation or revolution and geographical extent of the global surface monsoons deserve to be highlighted. In the abundant literary and audiovisual production devoted to monsoons worldwide and despite the fact that everyone agrees with physical law which shows that Coriolis force acts to the right in the northern hemisphere (to the left in the southern hemisphere), there is no reference to the relationship between Coriolis force (due to earth’s rotation) effects on troposphere general circulation and geographical extent of the global surface monsoons. Furthermore knowing that the ITCZ oscillations on either side of the equators (due to earth’s revolution) determine the seasons (mainly winter and summer), it is clear that earth’s revolution also plays a crucial role in the seasonal reversal of the prevailing surface winds observed in the regions where monsoons are found. Our main objective is to provide a rational answer to the question: what is a monsoon?展开更多
文摘Monsoon seasons, occasionally also known as wet seasons or trade-wind littoral seasons, are found in the regions where there is a complete seasonal reversal of the prevailing surface winds. Accompanying these shifts in the prevailing surface winds are modulations in rainfall activity. Given the fact that our knowledge of the monsoons is mainly based on the interpretation of the mean values of precipitation, cloudiness and winds;relationships between earth’s rotation or revolution and geographical extent of the global surface monsoons deserve to be highlighted. In the abundant literary and audiovisual production devoted to monsoons worldwide and despite the fact that everyone agrees with physical law which shows that Coriolis force acts to the right in the northern hemisphere (to the left in the southern hemisphere), there is no reference to the relationship between Coriolis force (due to earth’s rotation) effects on troposphere general circulation and geographical extent of the global surface monsoons. Furthermore knowing that the ITCZ oscillations on either side of the equators (due to earth’s revolution) determine the seasons (mainly winter and summer), it is clear that earth’s revolution also plays a crucial role in the seasonal reversal of the prevailing surface winds observed in the regions where monsoons are found. Our main objective is to provide a rational answer to the question: what is a monsoon?