Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately ...Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately affect summer maize production.In this study,field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors,average solar radiation and total precipitation on the growth process,ear differentiation,fertilization characteristics,grain filling and yield of summer maize varieties with different growth durations.Four hybrids were evaluated in Huang-Huai-Hai Plain(HHHP),China from 2018 to 2020 with five different sowing dates.The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking(R1)to milking(R3)stage.Average minimum temperature(AT_(min))was the key environmental factor that determined yield.Reductions in the length of the growing season(r=–0.556,P<0.01)and the total floret number on ear(R^(2)=0.200,P<0.001)were found when AT_(min) was elevated from the emerging(VE)to R1 stage.Both grain-filling rate(R^(2)=0.520,P<0.001)and the floret abortion rate on ear(R^(2)=0.437,P<0.001)showed quadratic relationships with AT_(min) from the R1 to physiological maturity(R6)stage,while the number of days after the R1 stage(r=–0.756,P<0.01)was negatively correlated with AT_(min).An increase in AT_(min) was beneficial for the promotion of yield when it did not exceeded a certain level(above 23°C during the R1–R3 stage and 20–21°C during the R1-R6 stage).Enhanced solar radiation and precipitation during R1–R6 increased the grain-filling rate(R^(2)=0.562,P<0.001 and R^(2)=0.229,P<0.05,respectively).Compared with short-season hybrids,full-season hybrids showed much greater suitability for a critical environment.The coordinated regulation of AT_(min),ear differentiation and grain development at the pre-and post-silking stages improved maize yield by increasing total floret number展开更多
基金supported by Key Technology Research and Development Program of Shandong Province,China(2021LZGC014-2)the National Natural Science Foundation of China(32172115)the National Modern Agriculture Industry Technology System,China(CARS02-21)。
文摘Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately affect summer maize production.In this study,field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors,average solar radiation and total precipitation on the growth process,ear differentiation,fertilization characteristics,grain filling and yield of summer maize varieties with different growth durations.Four hybrids were evaluated in Huang-Huai-Hai Plain(HHHP),China from 2018 to 2020 with five different sowing dates.The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking(R1)to milking(R3)stage.Average minimum temperature(AT_(min))was the key environmental factor that determined yield.Reductions in the length of the growing season(r=–0.556,P<0.01)and the total floret number on ear(R^(2)=0.200,P<0.001)were found when AT_(min) was elevated from the emerging(VE)to R1 stage.Both grain-filling rate(R^(2)=0.520,P<0.001)and the floret abortion rate on ear(R^(2)=0.437,P<0.001)showed quadratic relationships with AT_(min) from the R1 to physiological maturity(R6)stage,while the number of days after the R1 stage(r=–0.756,P<0.01)was negatively correlated with AT_(min).An increase in AT_(min) was beneficial for the promotion of yield when it did not exceeded a certain level(above 23°C during the R1–R3 stage and 20–21°C during the R1-R6 stage).Enhanced solar radiation and precipitation during R1–R6 increased the grain-filling rate(R^(2)=0.562,P<0.001 and R^(2)=0.229,P<0.05,respectively).Compared with short-season hybrids,full-season hybrids showed much greater suitability for a critical environment.The coordinated regulation of AT_(min),ear differentiation and grain development at the pre-and post-silking stages improved maize yield by increasing total floret number