This paper is concerned with the numerical solution of delay dynamical systems. We focus on dissipativity of numerical methods. It is proved that a linear θ-method is dissipative for finite-dimensional delay dynamica...This paper is concerned with the numerical solution of delay dynamical systems. We focus on dissipativity of numerical methods. It is proved that a linear θ-method is dissipative for finite-dimensional delay dynamical systems if and only if 1/2 ≤θ ≤1.展开更多
The topological structure of a complex dynamical network plays a vital role in determining the network's evolutionary mecha- nisms and functional behaviors, thus recognizing and inferring the network structure is of ...The topological structure of a complex dynamical network plays a vital role in determining the network's evolutionary mecha- nisms and functional behaviors, thus recognizing and inferring the network structure is of both theoretical and practical signif- icance. Although various approaches have been proposed to estimate network topologies, many are not well established to the noisy nature of network dynamics and ubiquity of transmission delay among network individuals. This paper focuses on to- pology inference of uncertain complex dynamical networks. An auxiliary network is constructed and an adaptive scheme is proposed to track topological parameters. It is noteworthy that the considered network model is supposed to contain practical stochastic perturbations, and noisy observations are taken as control inputs of the constructed auxiliary network. In particular, the control technique can be further employed to locate hidden sources (or latent variables) in networks. Numerical examples are provided to illustrate the effectiveness of the proposed scheme. In addition, the impact of coupling strength and coupling delay on identification performance is assessed. The proposed scheme provides engineers with a convenient approach to infer topologies of general complex dynamical networks and locate hidden sources, and the detailed performance evaluation can further facilitate practical circuit design.展开更多
Breast cancer in women is a complicated and multifaceted disease. Studies have demonstrated that hyperglycemia is one of the most significant risk factors for breast cancer. Hyperglycemia is when the sugar level in hu...Breast cancer in women is a complicated and multifaceted disease. Studies have demonstrated that hyperglycemia is one of the most significant risk factors for breast cancer. Hyperglycemia is when the sugar level in human blood is too high, which means excess glucose. Glucose excess can encourage the growth, invasion, and migration of breast cancer cells at the cellular level. Though, the effects of glucose on the dynamics of breast cancer cells have been examined mathematically by a system of ordinary differential equations. However, the non-instantaneous biological occurrences leading to the secretion of immuno-suppressive cytokines by tumors to evade immune surveillance and the immune cells’ derivation of cytokines to attack the tumor cells are not yet discussed. Therefore, investigating the biological process involved in the dynamics of tumors, immune and normal cells with excessive glucose concentration is inviolable to determining the best procedure for controlling tumors’ uncontrollable growth. Time delay, denoted by τ, is used to describe the time tumor cells take to secrete immunosuppressive cytokines to evade immune surveillance and the time immune cells take to recognize and attack the tumor cells. We have studied the local stability analysis of the biological steady states in both delayed and non-delayed system. The Routh-Hurwitz stability criterion is used to analyze the dynamical equilibrium of the cells’ population. Hopf bifurcation was analyzed by using time delay s as a bifurcation parameter. The analytical results suggest an unstable scenario for a tumor-free equilibrium point as normal cells are bound to grow to their carrying capacity. The result predicts a stable system for coexisting equilibrium when the interaction is instantaneous (τ = 0). However, when τ > 0, the coexisting equilibrium point switches from stable to unstable. The numerical results not only validate all the analytical results but also show the case of possible situations when glucose concentration is varied, indicat展开更多
This paper investigates the issue of stabilization for discrete-time dynamical systems(DDS)by event-triggered impulsive control(ETIC). Based on some relatively simple threshold constants, three levels of event con...This paper investigates the issue of stabilization for discrete-time dynamical systems(DDS)by event-triggered impulsive control(ETIC). Based on some relatively simple threshold constants, three levels of event conditions are set and thus the ETIC scheme is designed. Three cases for ETIC with and without time-delays and data dropouts are studied respectively, and the criteria on exponential stability are derived for the controlled DDS. The stabilization in the form of exponential stability is achieved for DDS under the designed ETIC with or without time-delays. And in the case of the ETIC data dropouts, the conditions of exponential stabilization are derived for DDS and the maximal allowable dropout rates for ETIC are estimated. Finally, one example with numerical simulations is worked out for illustration.展开更多
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedba...In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.展开更多
To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make th...To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.展开更多
An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case.Multiple time scales method is applied for this system to find analytic solution with the existe...An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case.Multiple time scales method is applied for this system to find analytic solution with the existence and nonexistence of the time delay on control loop.An appropriate stability analysis is also performed and appropriate choices for the feedback gains and the time delay are found in order to reduce the amplitude peak.Different response curves are involved to show and compare controller effects.In addition,analytic solutions are compared with numerical approximation solutions using Rung-Kutta method of fourth order.展开更多
In this paper,certain delayed virus dynamical models with cell-to-cell infection and density-dependent diffusion are investigated.For the viral model with a single strain,we have proved the well-posedness and studied ...In this paper,certain delayed virus dynamical models with cell-to-cell infection and density-dependent diffusion are investigated.For the viral model with a single strain,we have proved the well-posedness and studied the global stabilities of equilibria by defining the basic reproductive number R_(0) and structuring proper Lyapunov functional.Moreover,we found that the infection-free equilibrium is globally asymptotically stable if R_(0)<1,and the infection equilibrium is globally asymptotically stable if R_(0)>1.For the multi-strain model,we found that all viral strains coexist if the corresponding basic reproductive number R^(e)_(j)>1,while virus will extinct if R^(e)_(j)<1.As a result,we found that delay and the density-dependent diffusion does not influence the global stability of the model with cell-to-cell infection and homogeneous Neumann boundary conditions.展开更多
A sufficient condition is obtained for a two-agent opinion dynamical system with pro-cessing delay to experience unconditional consensus. To this end, the dynamics proposed is transformed into a general class of delay...A sufficient condition is obtained for a two-agent opinion dynamical system with pro-cessing delay to experience unconditional consensus. To this end, the dynamics proposed is transformed into a general class of delay differential equation and asymptotic stability of the origin is then analyzed. It is also shown that increasing delay can prolong the time needed for the system to realize consensus and even induce a Hopf bifurcation.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
文摘This paper is concerned with the numerical solution of delay dynamical systems. We focus on dissipativity of numerical methods. It is proved that a linear θ-method is dissipative for finite-dimensional delay dynamical systems if and only if 1/2 ≤θ ≤1.
基金supported by the National Science and Technology Major Project of China(Grant No.2014ZX10004001-014)the National Natural Science Foundation of China(Grant Nos.61573262,61532020&11472290)the Fundamental Research Funds for the Central Universities(Grant No.2014201020206)
文摘The topological structure of a complex dynamical network plays a vital role in determining the network's evolutionary mecha- nisms and functional behaviors, thus recognizing and inferring the network structure is of both theoretical and practical signif- icance. Although various approaches have been proposed to estimate network topologies, many are not well established to the noisy nature of network dynamics and ubiquity of transmission delay among network individuals. This paper focuses on to- pology inference of uncertain complex dynamical networks. An auxiliary network is constructed and an adaptive scheme is proposed to track topological parameters. It is noteworthy that the considered network model is supposed to contain practical stochastic perturbations, and noisy observations are taken as control inputs of the constructed auxiliary network. In particular, the control technique can be further employed to locate hidden sources (or latent variables) in networks. Numerical examples are provided to illustrate the effectiveness of the proposed scheme. In addition, the impact of coupling strength and coupling delay on identification performance is assessed. The proposed scheme provides engineers with a convenient approach to infer topologies of general complex dynamical networks and locate hidden sources, and the detailed performance evaluation can further facilitate practical circuit design.
文摘Breast cancer in women is a complicated and multifaceted disease. Studies have demonstrated that hyperglycemia is one of the most significant risk factors for breast cancer. Hyperglycemia is when the sugar level in human blood is too high, which means excess glucose. Glucose excess can encourage the growth, invasion, and migration of breast cancer cells at the cellular level. Though, the effects of glucose on the dynamics of breast cancer cells have been examined mathematically by a system of ordinary differential equations. However, the non-instantaneous biological occurrences leading to the secretion of immuno-suppressive cytokines by tumors to evade immune surveillance and the immune cells’ derivation of cytokines to attack the tumor cells are not yet discussed. Therefore, investigating the biological process involved in the dynamics of tumors, immune and normal cells with excessive glucose concentration is inviolable to determining the best procedure for controlling tumors’ uncontrollable growth. Time delay, denoted by τ, is used to describe the time tumor cells take to secrete immunosuppressive cytokines to evade immune surveillance and the time immune cells take to recognize and attack the tumor cells. We have studied the local stability analysis of the biological steady states in both delayed and non-delayed system. The Routh-Hurwitz stability criterion is used to analyze the dynamical equilibrium of the cells’ population. Hopf bifurcation was analyzed by using time delay s as a bifurcation parameter. The analytical results suggest an unstable scenario for a tumor-free equilibrium point as normal cells are bound to grow to their carrying capacity. The result predicts a stable system for coexisting equilibrium when the interaction is instantaneous (τ = 0). However, when τ > 0, the coexisting equilibrium point switches from stable to unstable. The numerical results not only validate all the analytical results but also show the case of possible situations when glucose concentration is varied, indicat
基金supported by the National Natural Science Foundation of China under Grant No.61673165the Hong Kong Research Grants Council of GRF Project under Grant No.17200415the Hunan Provincial Natural Science Foundation of China under Grants Nos.2015JJ2045 and 2017JJ2070
文摘This paper investigates the issue of stabilization for discrete-time dynamical systems(DDS)by event-triggered impulsive control(ETIC). Based on some relatively simple threshold constants, three levels of event conditions are set and thus the ETIC scheme is designed. Three cases for ETIC with and without time-delays and data dropouts are studied respectively, and the criteria on exponential stability are derived for the controlled DDS. The stabilization in the form of exponential stability is achieved for DDS under the designed ETIC with or without time-delays. And in the case of the ETIC data dropouts, the conditions of exponential stabilization are derived for DDS and the maximal allowable dropout rates for ETIC are estimated. Finally, one example with numerical simulations is worked out for illustration.
基金Project supported by the National Natural Science Foundation of China(Grant No.61004101)the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002)+1 种基金the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
文摘In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61104092,61134007,and61203147the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results.
基金supported by the National Natural Science Foundation of China(61304004,61503205)the Foundation of China Scholarship Council(201406715056)+1 种基金the Foundation of Changzhou Key Laboratory of Special Robot and Intelligent Technology(CZSR2014005)the Changzhou Science and Technology Program(CJ20160013)
文摘An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case.Multiple time scales method is applied for this system to find analytic solution with the existence and nonexistence of the time delay on control loop.An appropriate stability analysis is also performed and appropriate choices for the feedback gains and the time delay are found in order to reduce the amplitude peak.Different response curves are involved to show and compare controller effects.In addition,analytic solutions are compared with numerical approximation solutions using Rung-Kutta method of fourth order.
基金supported by NSFC(Nos.11671346 and U1604180)Key Scien-tific and Technological Research Projects in Henan Province(Nos.192102310089,18B110003)+1 种基金Foundation of Henan Educational Committee(No.19A110009)Grant of Bioinformatics Center of Henan University(No.2019YLXKJC02).
文摘In this paper,certain delayed virus dynamical models with cell-to-cell infection and density-dependent diffusion are investigated.For the viral model with a single strain,we have proved the well-posedness and studied the global stabilities of equilibria by defining the basic reproductive number R_(0) and structuring proper Lyapunov functional.Moreover,we found that the infection-free equilibrium is globally asymptotically stable if R_(0)<1,and the infection equilibrium is globally asymptotically stable if R_(0)>1.For the multi-strain model,we found that all viral strains coexist if the corresponding basic reproductive number R^(e)_(j)>1,while virus will extinct if R^(e)_(j)<1.As a result,we found that delay and the density-dependent diffusion does not influence the global stability of the model with cell-to-cell infection and homogeneous Neumann boundary conditions.
基金This work was jointly supported by National Natural Science Foundation of China (11401577) and Youth Top-notch Talent Support Program of NUDT (2014-2017).
文摘A sufficient condition is obtained for a two-agent opinion dynamical system with pro-cessing delay to experience unconditional consensus. To this end, the dynamics proposed is transformed into a general class of delay differential equation and asymptotic stability of the origin is then analyzed. It is also shown that increasing delay can prolong the time needed for the system to realize consensus and even induce a Hopf bifurcation.
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.