The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based...The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.展开更多
基金the Fundamental Research Funds for the Central Universities under Grant No.HEUCFZ1125National Natural Science Foundation of China under Grant No.10972064
文摘The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.