The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies...The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies and paleosols. Based on comprehensive analyses on the distribution of magnetic susceptibility and CaCO3 and paleo-ecology indicated by fossils in the region, it is considered that the sedimentation cycles resulted from dry-cold and warm-humid climate fluctuations. Magnetic susceptibility values and CaCO3 contents in stratigraphic sectors I, III, V and II, IV basically respectively present peaks and low vales, and the former three can in time correlate with MIS5a, MIS5c and MIS5e successively and the latter two with MIS5b and MIS5d. In addition, some horizons of eolian dune sands and the low vales of their magnetic susceptibility and CaCO3 are also correlated with 6 periods of cooling events indicated by the higher content of foraminifer Neogloboquadrina pachyderma (S.) documented in the V29—191 drill in the North Atlantic and the cold events recorded by δ 18O in the ice cores in GRIP, especially with 9 periods of dust events in Chinese Loess Plateau.展开更多
The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East A...The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East Asian winter monsoon in the Mu Us desert during Holocene. The examined ages for the 11 layers of dune sands, based on the average sedimentary rate, are: 0 to 960, 1350-2240, 2470 to 3530, 4000 to 4180, 4290 to 4350, 4380 to 4760, 5040 to 5920, 6570 to 8270, 9020 to 9700, 9880 to 10160 and 10580 to 11080 a BP, respectively. The climatic events indicated by these dune sands are consistent with those records in the Huguangyan volcanic lake, Zoige peat bog, Hulu cave and Dunde ice core, particularly with the climatic fluctuations of the North Atlantic since 11 000 a BP. Among them, patterns from B0 to B8 correspond to the peak values of 0MD, 2D, 4D, 6D+8D+10D, 12D, 14D, 16D, 18D and 20D respectively. It might be caused by the North Atlantic ice age induced by the heat circulation, which strengthened the polar high pressure and Siberian-Mongolian high pressure and further led to the dominance of the winter monsoon over China's desert area.展开更多
The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian...The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are ob-tained, and these ages provide a relatively complete and well-dated chronology for wet and dry varia-tions in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ~2.3 ka, the region became dry again, as inferred from widespread dune activity. The '8.2 ka' cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world.展开更多
Environments in arid and semiarid regions are extremely sensitive to climate changes. High wind activity in these regions has resulted in an extensively developed arid geomorphology, but past environmental changes are...Environments in arid and semiarid regions are extremely sensitive to climate changes. High wind activity in these regions has resulted in an extensively developed arid geomorphology, but past environmental changes are poorly understood because of the absence of relatively high-resolution proxies. The accumulation characteristics of nebkhas, which have developed extensively in these regions, can be used as a method of reconstructing environmental changes. Here we summarized recent advances in research on the formation, development, and sediment characteristics of nebkhas and their significance to environmental changes in arid and semiarid regions. Based on the studies of our colleagues, we suggested that research on nebkha formation can provide distinct clues about environmental changes in arid and semiarid regions; however, continued studies are needed.展开更多
In order to clarify the formation mechanism of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China, we analyzed the grain-size and sorting parameters of the dune and interdune sands. The surfac...In order to clarify the formation mechanism of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China, we analyzed the grain-size and sorting parameters of the dune and interdune sands. The surface sands (0-30 ram) from the dune base to the crest of both flanks and interdune corridors were sampled along transects from upwind to downwind through the dune field. The results indicated that the grain-size distribution differed at different positions between and within the dunes. The frequency curve for dune sands mainly showed a bimodal distribution, while the interdune sediments showed a trimodal distribution. The grain size distribution of the linear dunes showed a finer crest pattern, i.e. the crests were composed of sands that were generally finer, better sorted than those of base sands. In addition, at the dune field scale, the dune crest sands were tending to become much finer but sorting became worse along the downwind transects. However, the grain-size parameters of sediments in the interdune corridors showed no clear pattern. The results demonstrated that the grain size and sorting parameters exhibited a systematic change not only at the individual scale but also at the dune field scale. Our results quantitatively estimate the limited role of cohesive sediments on the formation of linear dune under unidirectional wind regime. More attention should be paid to a long-term wind regime observation, internal sedimentary structures and their formation ages.展开更多
Identifying the provenance of aeolian sediments in the Hunshandake Sandy Land is of great importance for understanding the formation of the dune fields in the mid-latitudes and for deciphering information about desert...Identifying the provenance of aeolian sediments in the Hunshandake Sandy Land is of great importance for understanding the formation of the dune fields in the mid-latitudes and for deciphering information about desert's responses to global change. By determining the major and trace elements concentrations of aeolian sands in three grain size fractions from the central and western parts of the Hunshandake Sandy Land, we systematically study the provenance and the depositional history of aeolian sands in this desert environment. Our results show that aeolian sands from the Hunshandake Sandy Land are enriched in SiO2 and are depleted in many other elements compared to those of the Upper Continent Crust (UCC). Variations of the immobile elements ratios like Zr/Hf, La/Yb, Th/Nb, La/Nb, LaN/YbN, GdN/YbN are relatively large in the coarse and medium fractions but minor in the fine fractions. Eu anomalies are quite different in the coarse fractions, but mostly positive in the medium fractions and all negative in the fine fractions. Decreasing tendency of Zr concentrations from the west to the east in the Hunshandake Sandy Land is evident in the coarse sands but rather weak in the fine grain size fractions. Our geochemical data indicate that the sources for the coarse and medium fractions of aeolian sands are diverse, influenced by local geology and geomorphology, while the fine sand fractions are more homogenous due to intensive mixture mainly by aeolian processes. Various ratios of immobile elements suggest that these sands should be sourced primarily from the surrounding mountains by fluvial/alluvial processes rather than from any remote territories. Aeolian sands with Ce negative anomalies are widely distributed in the Hunshandake Sandy Land, indicating that aquatic environments have occurred extensively prior to the occurrence of the dune field.展开更多
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely di...The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.展开更多
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gurbantnggt Desert is mainly covered by longitudinal d...Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gurbantnggt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.展开更多
基金supported by the National Basic Research Program of China(Grant 2004CB720200)the National Natural Science Foundation of China(Grant 49971009)the Chinese Academy of Sciences(Grant KZCX2-SW-118).
文摘The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies and paleosols. Based on comprehensive analyses on the distribution of magnetic susceptibility and CaCO3 and paleo-ecology indicated by fossils in the region, it is considered that the sedimentation cycles resulted from dry-cold and warm-humid climate fluctuations. Magnetic susceptibility values and CaCO3 contents in stratigraphic sectors I, III, V and II, IV basically respectively present peaks and low vales, and the former three can in time correlate with MIS5a, MIS5c and MIS5e successively and the latter two with MIS5b and MIS5d. In addition, some horizons of eolian dune sands and the low vales of their magnetic susceptibility and CaCO3 are also correlated with 6 periods of cooling events indicated by the higher content of foraminifer Neogloboquadrina pachyderma (S.) documented in the V29—191 drill in the North Atlantic and the cold events recorded by δ 18O in the ice cores in GRIP, especially with 9 periods of dust events in Chinese Loess Plateau.
基金National Basic Research Program of China, No.2004CB720206 National Natural Science Foundation of China, No.40772118+1 种基金 No.49971009 Knowledge Innovation Project of CAS, No.KZCX2-SW-118
文摘The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East Asian winter monsoon in the Mu Us desert during Holocene. The examined ages for the 11 layers of dune sands, based on the average sedimentary rate, are: 0 to 960, 1350-2240, 2470 to 3530, 4000 to 4180, 4290 to 4350, 4380 to 4760, 5040 to 5920, 6570 to 8270, 9020 to 9700, 9880 to 10160 and 10580 to 11080 a BP, respectively. The climatic events indicated by these dune sands are consistent with those records in the Huguangyan volcanic lake, Zoige peat bog, Hulu cave and Dunde ice core, particularly with the climatic fluctuations of the North Atlantic since 11 000 a BP. Among them, patterns from B0 to B8 correspond to the peak values of 0MD, 2D, 4D, 6D+8D+10D, 12D, 14D, 16D, 18D and 20D respectively. It might be caused by the North Atlantic ice age induced by the heat circulation, which strengthened the polar high pressure and Siberian-Mongolian high pressure and further led to the dominance of the winter monsoon over China's desert area.
基金the Basic Research Project of China (Grant No.2004CB720201)US National Science Foundation (Grant Nos.ATM-0502489 and ATM-0502511)the Open Fund of State Key Laboratory of Loess and Quaternary Geology (Grant No. 0711)
文摘The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are ob-tained, and these ages provide a relatively complete and well-dated chronology for wet and dry varia-tions in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ~2.3 ka, the region became dry again, as inferred from widespread dune activity. The '8.2 ka' cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world.
基金National Natural Science Foundation of China, No.41071008
文摘Environments in arid and semiarid regions are extremely sensitive to climate changes. High wind activity in these regions has resulted in an extensively developed arid geomorphology, but past environmental changes are poorly understood because of the absence of relatively high-resolution proxies. The accumulation characteristics of nebkhas, which have developed extensively in these regions, can be used as a method of reconstructing environmental changes. Here we summarized recent advances in research on the formation, development, and sediment characteristics of nebkhas and their significance to environmental changes in arid and semiarid regions. Based on the studies of our colleagues, we suggested that research on nebkha formation can provide distinct clues about environmental changes in arid and semiarid regions; however, continued studies are needed.
基金funded by the National Natural Science Foundation of China (41171010, 41130533, 41301003)
文摘In order to clarify the formation mechanism of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China, we analyzed the grain-size and sorting parameters of the dune and interdune sands. The surface sands (0-30 ram) from the dune base to the crest of both flanks and interdune corridors were sampled along transects from upwind to downwind through the dune field. The results indicated that the grain-size distribution differed at different positions between and within the dunes. The frequency curve for dune sands mainly showed a bimodal distribution, while the interdune sediments showed a trimodal distribution. The grain size distribution of the linear dunes showed a finer crest pattern, i.e. the crests were composed of sands that were generally finer, better sorted than those of base sands. In addition, at the dune field scale, the dune crest sands were tending to become much finer but sorting became worse along the downwind transects. However, the grain-size parameters of sediments in the interdune corridors showed no clear pattern. The results demonstrated that the grain size and sorting parameters exhibited a systematic change not only at the individual scale but also at the dune field scale. Our results quantitatively estimate the limited role of cohesive sediments on the formation of linear dune under unidirectional wind regime. More attention should be paid to a long-term wind regime observation, internal sedimentary structures and their formation ages.
基金supported by the National Natural Science Foundation of China (Grant nos.: 40930105, 41172325)the Chinese Academy of Sciences (CAS) Strategic Priority Research Program (grant no. XDA05120502)
文摘Identifying the provenance of aeolian sediments in the Hunshandake Sandy Land is of great importance for understanding the formation of the dune fields in the mid-latitudes and for deciphering information about desert's responses to global change. By determining the major and trace elements concentrations of aeolian sands in three grain size fractions from the central and western parts of the Hunshandake Sandy Land, we systematically study the provenance and the depositional history of aeolian sands in this desert environment. Our results show that aeolian sands from the Hunshandake Sandy Land are enriched in SiO2 and are depleted in many other elements compared to those of the Upper Continent Crust (UCC). Variations of the immobile elements ratios like Zr/Hf, La/Yb, Th/Nb, La/Nb, LaN/YbN, GdN/YbN are relatively large in the coarse and medium fractions but minor in the fine fractions. Eu anomalies are quite different in the coarse fractions, but mostly positive in the medium fractions and all negative in the fine fractions. Decreasing tendency of Zr concentrations from the west to the east in the Hunshandake Sandy Land is evident in the coarse sands but rather weak in the fine grain size fractions. Our geochemical data indicate that the sources for the coarse and medium fractions of aeolian sands are diverse, influenced by local geology and geomorphology, while the fine sand fractions are more homogenous due to intensive mixture mainly by aeolian processes. Various ratios of immobile elements suggest that these sands should be sourced primarily from the surrounding mountains by fluvial/alluvial processes rather than from any remote territories. Aeolian sands with Ce negative anomalies are widely distributed in the Hunshandake Sandy Land, indicating that aquatic environments have occurred extensively prior to the occurrence of the dune field.
基金National Natural Science Foundation of China, No.40671186 No.40271012
文摘The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.
基金the National Key Basic Research Project(Grant No.G1999043504)the Knowledge Innovation Project ofCAS(Grant No.KZCX3-SW-326) the“Light of West China”Project of CAS for the talent training plan.
文摘Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gurbantnggt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.