The hydrogen induced cracking (HIC) behavior of a high deformability pipeline steel was investigated with three different dual-phase microstructures, ferrite and bainite (F+B), ferrite and martensite/austenite is...The hydrogen induced cracking (HIC) behavior of a high deformability pipeline steel was investigated with three different dual-phase microstructures, ferrite and bainite (F+B), ferrite and martensite/austenite islands (F+M/A) and ferrite and martensite (F+M), respectively. The HIC test was conducted in hydrogen sulfide (H2S)-saturated solution. The results showed that the steels with F+B and F+M/A dual-phase microstructures had both higher deformability and better HIC resistance, whereas the harder martensite phase in F+M microstructure was responsible for the worst HIC resistance. The band-like hard phase in dual-phase mi- crostructure was believed to lead to increasing susceptibility to HIC.展开更多
Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, mechanical properties, and stretch-flangeability of conventional dual-phase steels. Compar...Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, mechanical properties, and stretch-flangeability of conventional dual-phase steels. Compared to 0.03wt% silicon, the addition of 1.08wt% silicon induced the formation of finer ferrite grains (6.8μm ) and a higher carbon content of martensite (Cm≈ 0.32wt%). AS the silicon level increased, the initial strain-hardening rate (n value) and the uniform elongation increased, whereas the yield strength, yield ratio, and stretch-flangeability decreased. The microstructures were observed after hole-expansion tests. The results showed that low carbon content martensite (Cm ≈ 0.19wt%) can easily deform in coordination with ferrite. The relationship between the mechanical properties and stretch-flangeability indicated that the steel with large post-uniform elongation has good stretch-flangeability due to a closer plastic incom- patibility of the ferrite and martensite phases, which can effectively delay the production and decohesion of microvoids.展开更多
基金Item Sponsored by National Key Technology Research and Development Program of China(2011BAE25B03)
文摘The hydrogen induced cracking (HIC) behavior of a high deformability pipeline steel was investigated with three different dual-phase microstructures, ferrite and bainite (F+B), ferrite and martensite/austenite islands (F+M/A) and ferrite and martensite (F+M), respectively. The HIC test was conducted in hydrogen sulfide (H2S)-saturated solution. The results showed that the steels with F+B and F+M/A dual-phase microstructures had both higher deformability and better HIC resistance, whereas the harder martensite phase in F+M microstructure was responsible for the worst HIC resistance. The band-like hard phase in dual-phase mi- crostructure was believed to lead to increasing susceptibility to HIC.
基金financially supported by the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-12-046A)the Beijing Higher Education Young Elite Teacher Project (No. YETP0355)
文摘Uniaxial tension tests and hole-expansion tests were carried out to determine the influence of silicon on the microstructures, mechanical properties, and stretch-flangeability of conventional dual-phase steels. Compared to 0.03wt% silicon, the addition of 1.08wt% silicon induced the formation of finer ferrite grains (6.8μm ) and a higher carbon content of martensite (Cm≈ 0.32wt%). AS the silicon level increased, the initial strain-hardening rate (n value) and the uniform elongation increased, whereas the yield strength, yield ratio, and stretch-flangeability decreased. The microstructures were observed after hole-expansion tests. The results showed that low carbon content martensite (Cm ≈ 0.19wt%) can easily deform in coordination with ferrite. The relationship between the mechanical properties and stretch-flangeability indicated that the steel with large post-uniform elongation has good stretch-flangeability due to a closer plastic incom- patibility of the ferrite and martensite phases, which can effectively delay the production and decohesion of microvoids.