We analyzed the infrared 0R)-near infrared (NIR) 2D correlation spectra of drugs perturbed by temperature. By identification of functional groups by IR spectrum and by the correlation analysis of IR-NIR spectrum, w...We analyzed the infrared 0R)-near infrared (NIR) 2D correlation spectra of drugs perturbed by temperature. By identification of functional groups by IR spectrum and by the correlation analysis of IR-NIR spectrum, we identified the characteristic spectral bands that were closely related to the structure of a drug substance of interest. These characteristic spectral bands were relatively less interfered by other ingredients for analysis by the NIR correlation coefficient method. With these characteristic spectral bands, the accuracy of screening illegally added Sildenafil citrate, Tadalafil and Metforrnin hydrochloride in Chinese patent drugs and healthcare products reached about 90%, which met the requirements of rapid screening.展开更多
Three-dimensional printing is a technology that prints the products layer-by-layer,in which materials are deposited according to the digital model designed by computer aided design(CAD)software.This technology has com...Three-dimensional printing is a technology that prints the products layer-by-layer,in which materials are deposited according to the digital model designed by computer aided design(CAD)software.This technology has competitive advantages regarding product design complexity,product personalization,and on-demand manufacturing.The emergence of 3 D technology provides innovative strategies and new ways to develop novel drug delivery systems.This review summarizes the application of 3 D printing technologies in the pharmaceutical field,with an emphasis on the advantages of 3 D printing technologies for achieving rapid drug delivery,personalized drug delivery,compound drug delivery and customized drug delivery.In addition,this article illustrates the limitations and challenges of 3 D printing technologies in the field of pharmaceutical formulation development.展开更多
The development of personalized healthcare is rapidly growing thanks to the support of low-power electronics,advanced fabrication processes and secured data transmission protocols.Long-acting drug delivery systems abl...The development of personalized healthcare is rapidly growing thanks to the support of low-power electronics,advanced fabrication processes and secured data transmission protocols.Long-acting drug delivery systems able to sustain the release of therapeutics in a controllable manner can provide several advantages in the treatment of chronic diseases.Various systems under development control drug release from an implantable reservoir via concentration driven diffusion through nanofluidic membranes.Given the high drug concentration in the reservoir,an inward osmotic fluid transport occurs across the membrane,which counters the outward diffusion of drugs.The resulting osmotic pressure buildup may be sufficient to cause the failure of implants with associated risks to patients.Confidently assessing the osmotic pressure buildup requires testing in vivo.Here,using metal and polymer AM(additive manufacturing)processes,we designed and developed implantable drug reservoirs with embedded strain sensors to directly measure the osmotic pressure in drug delivery implants in vitro and in vivo.展开更多
基金National Key Technology R & D Program-On-site Rapid Identification of Drug Research Project (Grant No. 2008BAI55B06)
文摘We analyzed the infrared 0R)-near infrared (NIR) 2D correlation spectra of drugs perturbed by temperature. By identification of functional groups by IR spectrum and by the correlation analysis of IR-NIR spectrum, we identified the characteristic spectral bands that were closely related to the structure of a drug substance of interest. These characteristic spectral bands were relatively less interfered by other ingredients for analysis by the NIR correlation coefficient method. With these characteristic spectral bands, the accuracy of screening illegally added Sildenafil citrate, Tadalafil and Metforrnin hydrochloride in Chinese patent drugs and healthcare products reached about 90%, which met the requirements of rapid screening.
基金supported by the National Science and Technology Major Project which belongs to“The research on the key technology of 3D printing techniques in the field of pharmaceutical preparation”(No.2017ZX09201-003-011,China)supported by the China Pharmaceutical Association-Yiling Biomedical Innovation Project(China)financial and instrumental support from Jingxin Pharmaceutical Co.,Ltd.(Zhejiang,China)
文摘Three-dimensional printing is a technology that prints the products layer-by-layer,in which materials are deposited according to the digital model designed by computer aided design(CAD)software.This technology has competitive advantages regarding product design complexity,product personalization,and on-demand manufacturing.The emergence of 3 D technology provides innovative strategies and new ways to develop novel drug delivery systems.This review summarizes the application of 3 D printing technologies in the pharmaceutical field,with an emphasis on the advantages of 3 D printing technologies for achieving rapid drug delivery,personalized drug delivery,compound drug delivery and customized drug delivery.In addition,this article illustrates the limitations and challenges of 3 D printing technologies in the field of pharmaceutical formulation development.
文摘The development of personalized healthcare is rapidly growing thanks to the support of low-power electronics,advanced fabrication processes and secured data transmission protocols.Long-acting drug delivery systems able to sustain the release of therapeutics in a controllable manner can provide several advantages in the treatment of chronic diseases.Various systems under development control drug release from an implantable reservoir via concentration driven diffusion through nanofluidic membranes.Given the high drug concentration in the reservoir,an inward osmotic fluid transport occurs across the membrane,which counters the outward diffusion of drugs.The resulting osmotic pressure buildup may be sufficient to cause the failure of implants with associated risks to patients.Confidently assessing the osmotic pressure buildup requires testing in vivo.Here,using metal and polymer AM(additive manufacturing)processes,we designed and developed implantable drug reservoirs with embedded strain sensors to directly measure the osmotic pressure in drug delivery implants in vitro and in vivo.