The current research of wind turbine drivetrain is mainly concentrated in dynamic characteristics of gearbox with a specific suspension of main shaft, such as one-point and two-point suspension. However, little attent...The current research of wind turbine drivetrain is mainly concentrated in dynamic characteristics of gearbox with a specific suspension of main shaft, such as one-point and two-point suspension. However, little attention is paid to the e ects of these suspension configurations on the dynamic responses of wind turbine gearbox. This paper investigates the influences of suspension configurations of main shaft on the dynamic characteristics of drivetrain. For evaluating the dynamic behaviors of drivetrain with multi-stage transmission system more realistically, a dynamic modeling approach of drivetrain is proposed based on Timoshenko beam theory and Lagrange's equation. Considering the flexibility and di erent suspension configurations of main shaft, time-varying mesh sti ness excitation, time-varying transmission error excitation and gravity excitation, etc., a three-dimensional dynamic model of drivetrain is developed, and the dynamic responses of drivetrain are investigated. Results show that with the one-point suspension of main shaft, the resonance frequencies in gearbox, especially at the low-speed stage, obviously shift to the higher frequency range compared to the gearbox without main shaft, but this trend could be inversed by increasing main shaft length. Meanwhile, the loads in main shaft, main shaft bearing and carrier bearing are greatly sensitive to the main shaft length. Hence, the load sharing is further disrupted by main shaft, but this e ect could be alleviated by larger load torque. Comparing to the one-point suspension of main shaft, there occurs the obvious load reduction at the low-speed stage with two-point suspension of main shaft. However, those advantages greatly depend on the distance between two main bearings, and come at the expense of increased load in upwind main shaft unit and the corresponding main bearing. Finally, a wind field test is conducted to verify the proposed drivetrain model. This study develops a numerical model of drivetrain which is able to evaluate the e ects of di erent展开更多
降低机械载荷、提高发电量以及平抑功率波动是风电系统的主要控制目标之一。研究发现,在持续性风速激励下,轴系扭振除特征频率振荡分量以外还存在与风速同频的宽频受迫扭振,而现有扭振抑制方法不仅无法应对受迫扭振,在不适当的参数下甚...降低机械载荷、提高发电量以及平抑功率波动是风电系统的主要控制目标之一。研究发现,在持续性风速激励下,轴系扭振除特征频率振荡分量以外还存在与风速同频的宽频受迫扭振,而现有扭振抑制方法不仅无法应对受迫扭振,在不适当的参数下甚至会产生不利影响。文章聚焦于持续波动风速作用下风电机组的多目标发电优化控制,根据低频段削弱、同时特征频率增强的分频段轴系电气阻尼虚拟配置原则,基于小信号频域分析法揭示了扭振、最大功率点跟踪(maximum power point tracking,MPPT)和功率波动3个优化目标受控制器参数的影响规律。综合考虑了MPPT和功率波动对宽频扭振镇定的约束及3个目标的综合优化,针对全风速段不同工作模式分别设计控制器结构和参数,最后通过控制综合形成一套完整的控制策略。控制器硬件在环仿真表明所提控制策略可有效实现持续性风速激励下的多目标发电优化控制。展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51775061,51575061)Chongqing Municipal Research Program of Frontier and Application Foundation of China(Grant No.cstc2018jcyj AX0087)
文摘The current research of wind turbine drivetrain is mainly concentrated in dynamic characteristics of gearbox with a specific suspension of main shaft, such as one-point and two-point suspension. However, little attention is paid to the e ects of these suspension configurations on the dynamic responses of wind turbine gearbox. This paper investigates the influences of suspension configurations of main shaft on the dynamic characteristics of drivetrain. For evaluating the dynamic behaviors of drivetrain with multi-stage transmission system more realistically, a dynamic modeling approach of drivetrain is proposed based on Timoshenko beam theory and Lagrange's equation. Considering the flexibility and di erent suspension configurations of main shaft, time-varying mesh sti ness excitation, time-varying transmission error excitation and gravity excitation, etc., a three-dimensional dynamic model of drivetrain is developed, and the dynamic responses of drivetrain are investigated. Results show that with the one-point suspension of main shaft, the resonance frequencies in gearbox, especially at the low-speed stage, obviously shift to the higher frequency range compared to the gearbox without main shaft, but this trend could be inversed by increasing main shaft length. Meanwhile, the loads in main shaft, main shaft bearing and carrier bearing are greatly sensitive to the main shaft length. Hence, the load sharing is further disrupted by main shaft, but this e ect could be alleviated by larger load torque. Comparing to the one-point suspension of main shaft, there occurs the obvious load reduction at the low-speed stage with two-point suspension of main shaft. However, those advantages greatly depend on the distance between two main bearings, and come at the expense of increased load in upwind main shaft unit and the corresponding main bearing. Finally, a wind field test is conducted to verify the proposed drivetrain model. This study develops a numerical model of drivetrain which is able to evaluate the e ects of di erent
文摘降低机械载荷、提高发电量以及平抑功率波动是风电系统的主要控制目标之一。研究发现,在持续性风速激励下,轴系扭振除特征频率振荡分量以外还存在与风速同频的宽频受迫扭振,而现有扭振抑制方法不仅无法应对受迫扭振,在不适当的参数下甚至会产生不利影响。文章聚焦于持续波动风速作用下风电机组的多目标发电优化控制,根据低频段削弱、同时特征频率增强的分频段轴系电气阻尼虚拟配置原则,基于小信号频域分析法揭示了扭振、最大功率点跟踪(maximum power point tracking,MPPT)和功率波动3个优化目标受控制器参数的影响规律。综合考虑了MPPT和功率波动对宽频扭振镇定的约束及3个目标的综合优化,针对全风速段不同工作模式分别设计控制器结构和参数,最后通过控制综合形成一套完整的控制策略。控制器硬件在环仿真表明所提控制策略可有效实现持续性风速激励下的多目标发电优化控制。