Conventional reliability models of belt drive systems in the failure mode of fatigue are mainly based on the static stress strength interference model and its extended models, which cannot consider dynamic factors in ...Conventional reliability models of belt drive systems in the failure mode of fatigue are mainly based on the static stress strength interference model and its extended models, which cannot consider dynamic factors in the operational duration and be used for further availability analysis. In this paper, time-dependent reliability models, failure rate models and availability models of belt drive systems are developed based on the system dynamic equations with the dynamic stress and the material property degradation taken into account. In the proposed models, dynamic failure dependence and imperfect maintenance are taken into consideration. Furthermore, the issue of time scale inconsistency between system failure rate and system availability is proposed and addressed in the proposed system availability models. Besides, Monte Carlo simulations are carried out to validate the established models. The results from the proposed models and those from the Monte Carlo simulations show a consistency. Furthermore, the case studies show that the failure dependence, imperfect maintenance and the time scale inconsistency have significant influences on system availability. The independence assumption about the belt drive systems results in underestimations of both reliability and availability. Moreover, the neglect of the time scale inconsistency causes the underestimate of the system availability. Meanwhile, these influences show obvious time-dependent characteristics.展开更多
in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are a...in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.展开更多
Nonlinear dynamic analysis is performed on moving belts subjected to geometric nonlinearity and initial tension fluctuation. To incorporate more accurately the damping mechanism of belt material, linear viscoelastic m...Nonlinear dynamic analysis is performed on moving belts subjected to geometric nonlinearity and initial tension fluctuation. To incorporate more accurately the damping mechanism of belt material, linear viscoelastic models are adopted in a unified form of differential operators. To circumvent high-order differential vibration equation of time-varying coefficients and with gyroscopic and nonlinear terms, where analytical solution is almost impossible, a systematic approach is presented by reforming the motion equation and directly using the method of multiple scales. To exemplify the procedure, the solutions at principal resonance are obtained and their stability conditions are derived for employing a Kelvin-Voigt model to reflect the property of the belt material. The solutions and stability conditions successfully reduce to those for using Kelvin model and elastic model, which validate the present approaches. Numerical simulations highlight the effects of tension fluctuations and translating speeds on the stability of the belt vibration.展开更多
基金Supported by Program for Liaoning Innovative Talents in University(Grant No.LR2017070)National Natural Science Foundation of China(Grant No.51505207)+1 种基金Open Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering(Grant No.ZSTUME02A01)National Natural Science Foundation of China(Grant No.U1708255)
文摘Conventional reliability models of belt drive systems in the failure mode of fatigue are mainly based on the static stress strength interference model and its extended models, which cannot consider dynamic factors in the operational duration and be used for further availability analysis. In this paper, time-dependent reliability models, failure rate models and availability models of belt drive systems are developed based on the system dynamic equations with the dynamic stress and the material property degradation taken into account. In the proposed models, dynamic failure dependence and imperfect maintenance are taken into consideration. Furthermore, the issue of time scale inconsistency between system failure rate and system availability is proposed and addressed in the proposed system availability models. Besides, Monte Carlo simulations are carried out to validate the established models. The results from the proposed models and those from the Monte Carlo simulations show a consistency. Furthermore, the case studies show that the failure dependence, imperfect maintenance and the time scale inconsistency have significant influences on system availability. The independence assumption about the belt drive systems results in underestimations of both reliability and availability. Moreover, the neglect of the time scale inconsistency causes the underestimate of the system availability. Meanwhile, these influences show obvious time-dependent characteristics.
文摘in this paper, an electromechanically coupled mathematic model of multi-roller driving system for belt conveyor is set up, and the computing equations for dynamic displacement and dynamic tension of the conveyor are also formulated when the hoister is used for straining. Based on the belt conveyor of main inclined shaft in Chengzhuang coal mine, the driving torque, driving power and starting-speed characteristic of each electric motor are studied and measured when multi-roller variable-frequency drive (power distribution 2∶1) is used. The optimal control and the optimal starting-acceleration of the multi-roller variable-frequency drive are determined by a large number of industrial experiments and theoretical calculations.
基金Supported by the Basic Research Fund of Tsinghua University
文摘Nonlinear dynamic analysis is performed on moving belts subjected to geometric nonlinearity and initial tension fluctuation. To incorporate more accurately the damping mechanism of belt material, linear viscoelastic models are adopted in a unified form of differential operators. To circumvent high-order differential vibration equation of time-varying coefficients and with gyroscopic and nonlinear terms, where analytical solution is almost impossible, a systematic approach is presented by reforming the motion equation and directly using the method of multiple scales. To exemplify the procedure, the solutions at principal resonance are obtained and their stability conditions are derived for employing a Kelvin-Voigt model to reflect the property of the belt material. The solutions and stability conditions successfully reduce to those for using Kelvin model and elastic model, which validate the present approaches. Numerical simulations highlight the effects of tension fluctuations and translating speeds on the stability of the belt vibration.