近几年渤海海上溢油突发事件频发,对海洋环境造成严重的污染。本文将业务化气象数值模型(Weather Research and Forecast model,WRF)、海流数值模型(Regional Ocean Model System,ROMS)的数值预报结果作为海洋环境驱动场,采用"油粒...近几年渤海海上溢油突发事件频发,对海洋环境造成严重的污染。本文将业务化气象数值模型(Weather Research and Forecast model,WRF)、海流数值模型(Regional Ocean Model System,ROMS)的数值预报结果作为海洋环境驱动场,采用"油粒子"的海上溢油漂移扩散数值模拟方法,对在渤海发生的溢油扩散行为进行模拟预测。本文针对渤海溢油事件,设计敏感试验,研究不同风、流系数和网格分辨率对溢油扩散模拟结果的影响,获得适合于渤海的溢油数值模型参数,提高溢油漂移扩散预报的准确度,为海洋溢油应急处置和防灾减灾提供技术支持。展开更多
Using the approach of D. Landriault et al. and B. Li and X. Zhou, for a one-dimensional time-homogeneous diffusion process X and constants c 〈 a 〈 b 〈 d, we find expressions of double Laplace transforms of the form...Using the approach of D. Landriault et al. and B. Li and X. Zhou, for a one-dimensional time-homogeneous diffusion process X and constants c 〈 a 〈 b 〈 d, we find expressions of double Laplace transforms of the form Ex[e--θTd--λ∫o Td1a 〈Xs〈b ds; Td 〈 Tc], where Tx denotes the first passage time of level x. As applications, we find explicit Laplace transforms of the corresponding occupation time and occupation density for the Brownian motion with two-valued drift and that of occupation time for the skew Ornstein- Uhlenbeck process, respectively. Some known results are also recovered.展开更多
In recent years, a new fundamental equation of nonequilibrium statistical physics was proposed in place of the Liouville equation. That is the anomalous Langevin equation in (?) space or its equivalent Liouville diffu...In recent years, a new fundamental equation of nonequilibrium statistical physics was proposed in place of the Liouville equation. That is the anomalous Langevin equation in (?) space or its equivalent Liouville diffusion equation of time-reversal asymmetry. This equation reflects that the form of motion of particles in statistical thermody-namic systems has the drift-diffusion duality and the law of motion of statistical thermodynamics is stochastic in essence, but does not obey the Newton equation of motion, though it is also constrained by dynamics. The stochastic diffusion of the particles is the microscopic origin of macroscopic irre-versibility. Starting from this equation, the BBGKY diffusion equation hierarchy was presented, the hydrodynamic equations, such as the generalized Navier-Stokes equation, the mass drift-diffusion equation and the thermal conductivity equation have been derived succinctly. The unified description of all three level equations of microscopic, kinetic and hydrodynamic展开更多
The authors study the existence and long-time behavior of weak solutions to the bipolar transient quantum drift-diffusion model,a fourth order parabolic system.Using semi-discretization in time and entropy estimate,th...The authors study the existence and long-time behavior of weak solutions to the bipolar transient quantum drift-diffusion model,a fourth order parabolic system.Using semi-discretization in time and entropy estimate,the authors get the global existence of nonnegative weak solutions to the one-dimensional model with nonnegative initial and homogenous Neumann(or periodic)boundary conditions.Furthermore,by a logarithmic Sobolev inequality,it is proved that the periodic weak solution exponentially approaches its mean value as time increases to infinity.展开更多
A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in...A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassieal limit describes the relation between quantum and classical drift-diffusion models, Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity.展开更多
In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation...In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or another entropy increase rate, obtained a theoretica展开更多
The semiclassical limit in the transient quantum drift-diffusion equations with isentropic pressure in one space dimension is rigorously proved. The equations are supplemented with homogeneous Neumann boundary conditi...The semiclassical limit in the transient quantum drift-diffusion equations with isentropic pressure in one space dimension is rigorously proved. The equations are supplemented with homogeneous Neumann boundary conditions. It is shown that the semiclassical limit of this solution solves the classical drift-diffusion model. In the meanwhile, the global existence of weak solutions is proved.展开更多
Some derivations based on the anomalous Langevin equation in Liouville space (i.e. Γ space) or its equivalent Liouville diffusion equation of time reversal asymmetry are presented. The time rate of change, the balanc...Some derivations based on the anomalous Langevin equation in Liouville space (i.e. Γ space) or its equivalent Liouville diffusion equation of time reversal asymmetry are presented. The time rate of change, the balance equation, the entropy flow, the entropy production and the law of entropy increase of Gibbs nonequilibrium entropy and Boltzmann nonequilibrium entropy are rigorously derived and presented here. Furthermore, a nonlinear evolution equation of Gibbs nonequilibrium entropy density and Boltzmann nonequilibrium entropy density is first derived. The evolution equation shows that the change of nonequilibrium entropy density originates from not only drift, but also typical diffusion and inherent source production. Contrary to conventional knowledge, the entropy production density σ ≥0 everywhere for all the inhomogeneous systems far from equilibrium cannot be proved. Conversely, σ may be negative in some local space of such systems.展开更多
Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipol...Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipolar drift-diffusion model. In addition, the authors also prove the existence of weak solution.展开更多
In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread lit...In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.展开更多
文摘近几年渤海海上溢油突发事件频发,对海洋环境造成严重的污染。本文将业务化气象数值模型(Weather Research and Forecast model,WRF)、海流数值模型(Regional Ocean Model System,ROMS)的数值预报结果作为海洋环境驱动场,采用"油粒子"的海上溢油漂移扩散数值模拟方法,对在渤海发生的溢油扩散行为进行模拟预测。本文针对渤海溢油事件,设计敏感试验,研究不同风、流系数和网格分辨率对溢油扩散模拟结果的影响,获得适合于渤海的溢油数值模型参数,提高溢油漂移扩散预报的准确度,为海洋溢油应急处置和防灾减灾提供技术支持。
基金Acknowledgements The authors thank the anonymous referees for helpful comments. Yingqiu Li's work was supported by the National Natural Science Foundation of China (Grant No. 11171044) und the Natural Science Foundation of Hunan Province (Grant No. llJ32001) Suxin Wang's work was supported by the Natural Sciences and Engineering Research Council of Canada.
文摘Using the approach of D. Landriault et al. and B. Li and X. Zhou, for a one-dimensional time-homogeneous diffusion process X and constants c 〈 a 〈 b 〈 d, we find expressions of double Laplace transforms of the form Ex[e--θTd--λ∫o Td1a 〈Xs〈b ds; Td 〈 Tc], where Tx denotes the first passage time of level x. As applications, we find explicit Laplace transforms of the corresponding occupation time and occupation density for the Brownian motion with two-valued drift and that of occupation time for the skew Ornstein- Uhlenbeck process, respectively. Some known results are also recovered.
文摘In recent years, a new fundamental equation of nonequilibrium statistical physics was proposed in place of the Liouville equation. That is the anomalous Langevin equation in (?) space or its equivalent Liouville diffusion equation of time-reversal asymmetry. This equation reflects that the form of motion of particles in statistical thermody-namic systems has the drift-diffusion duality and the law of motion of statistical thermodynamics is stochastic in essence, but does not obey the Newton equation of motion, though it is also constrained by dynamics. The stochastic diffusion of the particles is the microscopic origin of macroscopic irre-versibility. Starting from this equation, the BBGKY diffusion equation hierarchy was presented, the hydrodynamic equations, such as the generalized Navier-Stokes equation, the mass drift-diffusion equation and the thermal conductivity equation have been derived succinctly. The unified description of all three level equations of microscopic, kinetic and hydrodynamic
基金Project supported by the National Natural Science Foundation of China(Nos.10631020,10401019)the Basic Research Grant of Tsinghua University.
文摘The authors study the existence and long-time behavior of weak solutions to the bipolar transient quantum drift-diffusion model,a fourth order parabolic system.Using semi-discretization in time and entropy estimate,the authors get the global existence of nonnegative weak solutions to the one-dimensional model with nonnegative initial and homogenous Neumann(or periodic)boundary conditions.Furthermore,by a logarithmic Sobolev inequality,it is proved that the periodic weak solution exponentially approaches its mean value as time increases to infinity.
基金Supported by the Natural Science Foundation of China (No. 10571101, No. 10626030 and No. 10871112)
文摘A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassieal limit describes the relation between quantum and classical drift-diffusion models, Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity.
文摘In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or another entropy increase rate, obtained a theoretica
基金the National Natural Science Foundation of China(Nos.10401019,10701011,10541001)
文摘The semiclassical limit in the transient quantum drift-diffusion equations with isentropic pressure in one space dimension is rigorously proved. The equations are supplemented with homogeneous Neumann boundary conditions. It is shown that the semiclassical limit of this solution solves the classical drift-diffusion model. In the meanwhile, the global existence of weak solutions is proved.
文摘Some derivations based on the anomalous Langevin equation in Liouville space (i.e. Γ space) or its equivalent Liouville diffusion equation of time reversal asymmetry are presented. The time rate of change, the balance equation, the entropy flow, the entropy production and the law of entropy increase of Gibbs nonequilibrium entropy and Boltzmann nonequilibrium entropy are rigorously derived and presented here. Furthermore, a nonlinear evolution equation of Gibbs nonequilibrium entropy density and Boltzmann nonequilibrium entropy density is first derived. The evolution equation shows that the change of nonequilibrium entropy density originates from not only drift, but also typical diffusion and inherent source production. Contrary to conventional knowledge, the entropy production density σ ≥0 everywhere for all the inhomogeneous systems far from equilibrium cannot be proved. Conversely, σ may be negative in some local space of such systems.
基金Supported by NSFC (10541001, 10571101, 10401019, and 10701011)by Basic Research Foundation of Tsinghua University
文摘Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipolar drift-diffusion model. In addition, the authors also prove the existence of weak solution.
文摘In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.