Recently reported summertime methane (CH4) emissions (6.7 ± 13.3 mg CH4/(m2·hr)) from newly created marshes in the drawdown area of the Three Gorges Reservoir (TGR), China have triggered broad concer...Recently reported summertime methane (CH4) emissions (6.7 ± 13.3 mg CH4/(m2·hr)) from newly created marshes in the drawdown area of the Three Gorges Reservoir (TGR), China have triggered broad concern in academic circles and among the public. The CH4 emissions from TGR water surfaces and drawdown areas were monitored from 3rd June to 16th October 2010 with floating and static chambers and gas chromatography. The average CH4 emission flux from permanently flooded areas in Zigui, Wushan and Yunyang Counties was (0.33 ± 0.09) mg CH4/(m2·hr). In half of these hottest months of the year, the wilderness, cropland and deforested drawdown sites were aerobic and located above water level, and the CH4 emissions were very small, ranging from a sink at 0.12 mg CH4/(m2·hr) to a source at 0.08 mg CH4/(m2·hr) except for one mud-covered site after flood. Mean CH4 emission in flooded drawdown sites was 0.34 mg CH4/(m2·hr). The emissions from the rice paddy sites in the drawdown area were averaged at (4.86 ± 2.31) mg CH4/(m2·hr). Excepting the rice-paddy sites, these results show much lower emission levels than previously reported. Our results indicated considerable spatial and temporal variation in CH4 emissions from the TGR. Human activities and occasional events, such as flood, may also affect emission levels. Long-term CH4 measurements and modeling in a large region are necessary to accurately estimate greenhouse gas emissions from the TGR.展开更多
Performances of a braced cut-and-cover excavation system for mass rapid transit (MRT) stations of the Downtown Line Stage 2 in Singapore are presented. The excavation was carried out in the Bukit Timah granitic (BT...Performances of a braced cut-and-cover excavation system for mass rapid transit (MRT) stations of the Downtown Line Stage 2 in Singapore are presented. The excavation was carried out in the Bukit Timah granitic (BTG) residual soils and characterized by significant groundwater drawdown, due to dewatering work in complex site conditions, insufficient effective waterproof measures and more permeable soils. A two-dimensional numerical model was developed for back analysis of retaining wall movement and ground surface settlement. Comparisons of these measured excavation responses with the calculated performances were carried out, upon which the numerical simulation procedures were calibrated. In addition, the influences of groundwater drawdown on the wall deflection and ground surface settlement were numerically investigated and summarized. The performances were also compared with some commonly used empirical charts, and the results indicated that these charts are less applicable for cases with significant groundwater drawdowns. It is expected that these general behaviors will provide useful references and insights for future projects involving excavation in BTG residual soils under significant groundwater drawdowns.展开更多
To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floati...To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.展开更多
基金supported by the National Natural Science Foundation of China (No. 50809067)the National Basic Research Program (973) of China (No.2010CB955904-03)the Chinese Academy of Sciences for Strategic Priority Research Program (No.XDA05060102, XDA05050602)
文摘Recently reported summertime methane (CH4) emissions (6.7 ± 13.3 mg CH4/(m2·hr)) from newly created marshes in the drawdown area of the Three Gorges Reservoir (TGR), China have triggered broad concern in academic circles and among the public. The CH4 emissions from TGR water surfaces and drawdown areas were monitored from 3rd June to 16th October 2010 with floating and static chambers and gas chromatography. The average CH4 emission flux from permanently flooded areas in Zigui, Wushan and Yunyang Counties was (0.33 ± 0.09) mg CH4/(m2·hr). In half of these hottest months of the year, the wilderness, cropland and deforested drawdown sites were aerobic and located above water level, and the CH4 emissions were very small, ranging from a sink at 0.12 mg CH4/(m2·hr) to a source at 0.08 mg CH4/(m2·hr) except for one mud-covered site after flood. Mean CH4 emission in flooded drawdown sites was 0.34 mg CH4/(m2·hr). The emissions from the rice paddy sites in the drawdown area were averaged at (4.86 ± 2.31) mg CH4/(m2·hr). Excepting the rice-paddy sites, these results show much lower emission levels than previously reported. Our results indicated considerable spatial and temporal variation in CH4 emissions from the TGR. Human activities and occasional events, such as flood, may also affect emission levels. Long-term CH4 measurements and modeling in a large region are necessary to accurately estimate greenhouse gas emissions from the TGR.
基金the financial support from Land Transport Innovation Fund(LTIF)project funded by the Land Transport Authority(LTA)the support from General Financial Grant of the China Postdoctoral Science Foundation(Grant No.2017M620414)+1 种基金Special Funding for Postdoctoral Researchers in Chongqing(Grant No.Xm2017007)the Advanced Interdisciplinary Special Cultivation Program of Chongqing University(Grant No.06112017CDJQJ208850)
文摘Performances of a braced cut-and-cover excavation system for mass rapid transit (MRT) stations of the Downtown Line Stage 2 in Singapore are presented. The excavation was carried out in the Bukit Timah granitic (BTG) residual soils and characterized by significant groundwater drawdown, due to dewatering work in complex site conditions, insufficient effective waterproof measures and more permeable soils. A two-dimensional numerical model was developed for back analysis of retaining wall movement and ground surface settlement. Comparisons of these measured excavation responses with the calculated performances were carried out, upon which the numerical simulation procedures were calibrated. In addition, the influences of groundwater drawdown on the wall deflection and ground surface settlement were numerically investigated and summarized. The performances were also compared with some commonly used empirical charts, and the results indicated that these charts are less applicable for cases with significant groundwater drawdowns. It is expected that these general behaviors will provide useful references and insights for future projects involving excavation in BTG residual soils under significant groundwater drawdowns.
基金Supported by the National Natural Science Foundation of China(51474109,51609090,51679097)the Science Research Project of Huazhong University of Science and Technology(0118140077,2006140115)
文摘To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.