为了克服传统能量检测算法的不足,提出了一种基于双门限能量检测的协作频谱感知算法(cooperative spectrum sensing algorithm based on double-threshold energy detection,CSBDE)。该算法采用噪声不确定条件下的双门限值作为判决条件...为了克服传统能量检测算法的不足,提出了一种基于双门限能量检测的协作频谱感知算法(cooperative spectrum sensing algorithm based on double-threshold energy detection,CSBDE)。该算法采用噪声不确定条件下的双门限值作为判决条件,将本地能量检测结果划分为硬判决和软判决。认知基站采用优化的融合准则,首先对所有本地硬判决进行融合,根据需要再进一步对本地软判决进行融合,最终给出全局判决结果。蒙特卡罗仿真结果表明,该算法能够克服噪声不确定性对能量检测的影响,提高了系统的检测性能。展开更多
Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only di...Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only distinguish among sensor fault,component fault and component-sensor simultaneous fault,but also isolate and locate sensor fault and the type of engine component fault when the engine component fault and the sensor faults occur simultaneously.The double-threshold mechanism has been proposed,in which the fault diagnostic threshold changed with the sensor type and the engine condition,and it greatly improved the accuracy and robustness of sensor fault diagnosis system.Simulation results show that the approach proposed can diagnose and isolate the sensor and engine component fault with improved accuracy.It effectively improves the fault diagnosis ability of aircraft engine.展开更多
This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshol...This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshold method is proposed, which is combined with the method of maximum classes variance, estimating-area method and double-threshold method. This method can automatically select two different thresholds to segment gradient images. The computer simulation is performed on the traditional methods and this algorithm and proves that this method can get satisfying result. Key words gradient histogram image - threshold selection - double-threshold method - maximum classes variance method CLC number TP 391. 41 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and the Project of Chenguang Plan in Wuhan (985003062)Biography: YANG Shen (1977-), female, Ph. D. candidate, research direction: multimedia information processing and network technology.展开更多
Extreme value analysis is an indispensable method to predict the probability of marine disasters and calculate the design conditions of marine engineering.The rationality of extreme value analysis can be easily affect...Extreme value analysis is an indispensable method to predict the probability of marine disasters and calculate the design conditions of marine engineering.The rationality of extreme value analysis can be easily affected by the lack of sample data.The peaks over threshold(POT)method and compound extreme value distribution(CEVD)theory are effective methods to expand samples,but they still rely on long-term sea state data.To construct a probabilistic model using shortterm sea state data instead of the traditional annual maximum series(AMS),the binomial-bivariate log-normal CEVD(BBLCED)model is established in this thesis.The model not only considers the frequency of the extreme sea state,but it also reflects the correlation between different sea state elements(wave height and wave period)and reduces the requirement for the length of the data series.The model is applied to the calculation of design wave elements in a certain area of the Yellow Sea.The results indicate that the BBLCED model has good stability and fitting effect,which is close to the probability prediction results obtained from the long-term data,and reasonably reflects the probability distribution characteristics of the extreme sea state.The model can provide a reliable basis for coastal engineering design under the condition of a lack of marine data.Hence,it is suitable for extreme value prediction and calculation in the field of disaster prevention and reduction.展开更多
文摘为了克服传统能量检测算法的不足,提出了一种基于双门限能量检测的协作频谱感知算法(cooperative spectrum sensing algorithm based on double-threshold energy detection,CSBDE)。该算法采用噪声不确定条件下的双门限值作为判决条件,将本地能量检测结果划分为硬判决和软判决。认知基站采用优化的融合准则,首先对所有本地硬判决进行融合,根据需要再进一步对本地软判决进行融合,最终给出全局判决结果。蒙特卡罗仿真结果表明,该算法能够克服噪声不确定性对能量检测的影响,提高了系统的检测性能。
基金Program Sponsored for Scientific Innovation Research of College Graduate in Jiangsu Province(CX10B_108Z)
文摘Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only distinguish among sensor fault,component fault and component-sensor simultaneous fault,but also isolate and locate sensor fault and the type of engine component fault when the engine component fault and the sensor faults occur simultaneously.The double-threshold mechanism has been proposed,in which the fault diagnostic threshold changed with the sensor type and the engine condition,and it greatly improved the accuracy and robustness of sensor fault diagnosis system.Simulation results show that the approach proposed can diagnose and isolate the sensor and engine component fault with improved accuracy.It effectively improves the fault diagnosis ability of aircraft engine.
文摘This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshold method is proposed, which is combined with the method of maximum classes variance, estimating-area method and double-threshold method. This method can automatically select two different thresholds to segment gradient images. The computer simulation is performed on the traditional methods and this algorithm and proves that this method can get satisfying result. Key words gradient histogram image - threshold selection - double-threshold method - maximum classes variance method CLC number TP 391. 41 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and the Project of Chenguang Plan in Wuhan (985003062)Biography: YANG Shen (1977-), female, Ph. D. candidate, research direction: multimedia information processing and network technology.
文摘Extreme value analysis is an indispensable method to predict the probability of marine disasters and calculate the design conditions of marine engineering.The rationality of extreme value analysis can be easily affected by the lack of sample data.The peaks over threshold(POT)method and compound extreme value distribution(CEVD)theory are effective methods to expand samples,but they still rely on long-term sea state data.To construct a probabilistic model using shortterm sea state data instead of the traditional annual maximum series(AMS),the binomial-bivariate log-normal CEVD(BBLCED)model is established in this thesis.The model not only considers the frequency of the extreme sea state,but it also reflects the correlation between different sea state elements(wave height and wave period)and reduces the requirement for the length of the data series.The model is applied to the calculation of design wave elements in a certain area of the Yellow Sea.The results indicate that the BBLCED model has good stability and fitting effect,which is close to the probability prediction results obtained from the long-term data,and reasonably reflects the probability distribution characteristics of the extreme sea state.The model can provide a reliable basis for coastal engineering design under the condition of a lack of marine data.Hence,it is suitable for extreme value prediction and calculation in the field of disaster prevention and reduction.