期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
AdaBoost的多样性分析及改进 被引量:13
1
作者 王玲娣 徐华 《计算机应用》 CSCD 北大核心 2018年第3期650-654,660,共6页
针对AdaBoost算法下弱分类器间的多样性如何度量问题以及AdaBoost的过适应问题,在分析并研究了4种多样性度量与AdaBoost算法的分类精度关系的基础上,提出一种基于双误度量改进的AdaBoost方法。首先,选择Q统计、相关系数、不一致度量、... 针对AdaBoost算法下弱分类器间的多样性如何度量问题以及AdaBoost的过适应问题,在分析并研究了4种多样性度量与AdaBoost算法的分类精度关系的基础上,提出一种基于双误度量改进的AdaBoost方法。首先,选择Q统计、相关系数、不一致度量、双误度量在UCI数据集上进行实验。然后,利用皮尔逊相关系数定量计算多样性与测试误差的相关性,发现在迭代后期阶段,它们都趋于一个稳定的值;其中双误度量在不同数据集上的变化模式固定,它在前期阶段不断增加,在迭代后期基本上不变,趋于稳定。最后,利用双误度量改进AdaBoost的弱分类器的选择策略。实验结果表明,与其他常用集成方法相比,改进后的AdaBoost算法的测试误差平均降低1.5个百分点,最高可降低4.8个百分点。因此,该算法可以进一步提高分类性能。 展开更多
关键词 多样性 ADABOOST 集成学习 双误度量 弱分类器
下载PDF
基于基分类器系数和多样性的改进AdaBoost算法 被引量:7
2
作者 朱亮 徐华 崔鑫 《计算机应用》 CSCD 北大核心 2021年第8期2225-2231,共7页
针对传统AdaBoost算法的基分类器线性组合效率低以及过适应的问题,提出了一种基于基分类器系数与多样性的改进算法——WD AdaBoost。首先,根据基分类器的错误率与样本权重的分布状态,给出新的基分类器系数求解方法,以提高基分类器的组... 针对传统AdaBoost算法的基分类器线性组合效率低以及过适应的问题,提出了一种基于基分类器系数与多样性的改进算法——WD AdaBoost。首先,根据基分类器的错误率与样本权重的分布状态,给出新的基分类器系数求解方法,以提高基分类器的组合效率;其次,在基分类器的选择策略上,WD AdaBoost算法引入双误度量以增加基分类器间的多样性。在五个来自不同实际应用领域的数据集上,与传统AdaBoost算法相比,CeffAda算法使用新的基分类器系数求解方法使测试误差平均降低了1.2个百分点;同时,WD AdaBoost算法与WLDF_Ada、AD_Ada、sk_AdaBoost等算法相对比,具有更低的错误率。实验结果表明,WD AdaBoost算法能够更高效地集成基分类器,抵抗过拟合,并可以提高分类性能。 展开更多
关键词 权重 多样性 ADABOOST 双误度量 分类性能
下载PDF
基于双错测度的极限学习机选择性集成方法 被引量:5
3
作者 夏平凡 倪志伟 +1 位作者 朱旭辉 倪丽萍 《电子与信息学报》 EI CSCD 北大核心 2020年第11期2756-2764,共9页
极限学习机(ELM)具有学习速度快、易实现和泛化能力强等优点,但单个ELM的分类性能不稳定。集成学习可以有效地提高单个ELM的分类性能,但随着数据规模和基ELM数目的增加,计算复杂度会大幅度增加,消耗大量的计算资源。针对上述问题,该文... 极限学习机(ELM)具有学习速度快、易实现和泛化能力强等优点,但单个ELM的分类性能不稳定。集成学习可以有效地提高单个ELM的分类性能,但随着数据规模和基ELM数目的增加,计算复杂度会大幅度增加,消耗大量的计算资源。针对上述问题,该文提出一种基于双错测度的极限学习机选择性集成方法(DFSEE),同时从理论和实验的角度进行了详细分析。首先,运用bootstrap方法重复抽取训练集,获得多个训练子集,在ELM上进行独立训练,得到多个具有较大差异性的基ELM,构成基ELM池;其次,计算出每个基ELM的双错测度,将基ELM按照双错测度的大小进行升序排序;最后,采用多数投票算法,根据顺序将基ELM逐个累加集成,直至集成精度最优,即获得基ELM最优子集成,并分析了其理论基础。在10个UCI数据集上的实验结果表明,较其他方法使用了更小规模的基ELM,获得了更高的集成精度,同时表明了其有效性和显著性。 展开更多
关键词 选择性集成 双错测度 极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部