We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. Th...We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. The device features a material stack that survives corrosive environments and enables high-temperature operation. To perform hightemperature testing, a specialized setup was constructed that allows the tuning fork to be characterized using traditional silicon electronics. The tuning fork has been operated at 600°C in the presence of dry steam for short durations. This tuning fork has also been tested to 64 000 G using a hard-launch, soft-catch shock implemented with a light gas gun. However, the device still has a strain sensitivity of 66 Hz/μe and strain resolution of 0. 045 μe in a 10 kHz bandwidth. As such, this balanced-mass double-ended tuning fork can be used to create a variety of different sensors including strain gauges, accelerometers, gyroscopes, and pressure transducers. Given the adaptable fabrication process flow, this device could be useful to micro-electro-mechanical systems (MEMS) designers creating sensors for a variety of different applications.展开更多
SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers ...SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.展开更多
Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios o...Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios of Ni/Co have been prepared by a polyol-mediated solvothermal method for H_(2)O_(2)detection.The obtained products exhibit honeycomb-like open porous microtubes constituted with the low-dimensional nanostructured Ni_(x)Co_(y)-DO blocks after the calcination treatment.Compared with nickel oxides,the introduced Co ions in Ni_(x)Co_(y)-DO can induce the production of surficial oxygen vacancies,and further enhance the electrode surface activity.In particular,the NiCo-DO sample(with an atomic ratio of Ni/Co=4:3)shows the richest surficial oxygen vacancies and presents the highest H_(2)O_(2)detection activity among all the as-prepared samples,demonstrating an excellent sensitivity of698.60μAL mmol^(-1)cm^(-2)(0~0.4 mmol/L),low detection limit(0.28μmol/L,S/N=3),as well as long stability,high selectivity and good reproducibility.This work lends a new impetus to the potential application of double metal oxides for the next generation of non-enzymatic sensors.展开更多
文摘We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. The device features a material stack that survives corrosive environments and enables high-temperature operation. To perform hightemperature testing, a specialized setup was constructed that allows the tuning fork to be characterized using traditional silicon electronics. The tuning fork has been operated at 600°C in the presence of dry steam for short durations. This tuning fork has also been tested to 64 000 G using a hard-launch, soft-catch shock implemented with a light gas gun. However, the device still has a strain sensitivity of 66 Hz/μe and strain resolution of 0. 045 μe in a 10 kHz bandwidth. As such, this balanced-mass double-ended tuning fork can be used to create a variety of different sensors including strain gauges, accelerometers, gyroscopes, and pressure transducers. Given the adaptable fabrication process flow, this device could be useful to micro-electro-mechanical systems (MEMS) designers creating sensors for a variety of different applications.
文摘SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
基金supported by the National Natural Science Foundation of China(Nos.51432003,51802011 and 51125007)the Start-Up Fund for Talent Introduction of Beijing University of Chemical Technology(No.buctrc201806)the Fundamental Research Funds for the Central Universities(No.JD2010)。
文摘Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios of Ni/Co have been prepared by a polyol-mediated solvothermal method for H_(2)O_(2)detection.The obtained products exhibit honeycomb-like open porous microtubes constituted with the low-dimensional nanostructured Ni_(x)Co_(y)-DO blocks after the calcination treatment.Compared with nickel oxides,the introduced Co ions in Ni_(x)Co_(y)-DO can induce the production of surficial oxygen vacancies,and further enhance the electrode surface activity.In particular,the NiCo-DO sample(with an atomic ratio of Ni/Co=4:3)shows the richest surficial oxygen vacancies and presents the highest H_(2)O_(2)detection activity among all the as-prepared samples,demonstrating an excellent sensitivity of698.60μAL mmol^(-1)cm^(-2)(0~0.4 mmol/L),low detection limit(0.28μmol/L,S/N=3),as well as long stability,high selectivity and good reproducibility.This work lends a new impetus to the potential application of double metal oxides for the next generation of non-enzymatic sensors.