Chemical doping of nickel hydroxide with other cations(e.g. Al^(3+)) is an efficient way to enhance its electrochemical capacitive performances. Herein, a simple cation–anion(Ni^(2+)and AlO_2) double hydrol...Chemical doping of nickel hydroxide with other cations(e.g. Al^(3+)) is an efficient way to enhance its electrochemical capacitive performances. Herein, a simple cation–anion(Ni^(2+)and AlO_2) double hydrolysis method was developed toward the synthesis of nickel–aluminum(Ni–Al) composite hydroxides. The obtained composite hydroxides possesses a porous structure, large surface area(121 m^2/g) and homogeneous element distribution. The electrochemical test shows that the obtained composite hydroxides exhibits a superior supercapacitive performances(specific capacitance of 1670F/g and rate capability of 87% from 0.5 A/g to 20 A/g) to doping-free nickel hydroxide(specific capacitance of 1227 F/g and rate capability of 47% from 0.5 A/g to 20 A/g). Moreover, the galvanostatic charge/discharge test displays that after 2000 cycles at large current density of 10 A/g, the composite hydroxides achieves a high capacitance retention of 98%, indicative of an excellent electrochemical cycleability.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 20773062, 20773063, 21173119, and 21273109)the Fundamental Research Funds for the CentralUniversitiesthe Project Funded by the Priority Academ Program Development of Jiangsu Higher Education Institutio (PAPD)
文摘Chemical doping of nickel hydroxide with other cations(e.g. Al^(3+)) is an efficient way to enhance its electrochemical capacitive performances. Herein, a simple cation–anion(Ni^(2+)and AlO_2) double hydrolysis method was developed toward the synthesis of nickel–aluminum(Ni–Al) composite hydroxides. The obtained composite hydroxides possesses a porous structure, large surface area(121 m^2/g) and homogeneous element distribution. The electrochemical test shows that the obtained composite hydroxides exhibits a superior supercapacitive performances(specific capacitance of 1670F/g and rate capability of 87% from 0.5 A/g to 20 A/g) to doping-free nickel hydroxide(specific capacitance of 1227 F/g and rate capability of 47% from 0.5 A/g to 20 A/g). Moreover, the galvanostatic charge/discharge test displays that after 2000 cycles at large current density of 10 A/g, the composite hydroxides achieves a high capacitance retention of 98%, indicative of an excellent electrochemical cycleability.