P‐doped TiO2 (PTIO) thin‐films with different P contents were prepared using a sol‐gel method. The thin‐film samples were characterized using various techniques. The photocatalytic activity was evaluated by decomp...P‐doped TiO2 (PTIO) thin‐films with different P contents were prepared using a sol‐gel method. The thin‐film samples were characterized using various techniques. The photocatalytic activity was evaluated by decomposing butyl benzyl phthalate under visible‐light irradiation. The results showed that the transformation of anatase to the rutile phase was inhibited and grain growth of TiO2 was prevented by P doping. The results confirm that the doped P atoms existed in two chemical forms, and those incorporated in the TiO2 lattice may play a positive role in photocatalysis. The high photocatalytic activities of the PTIO thin‐films may be the result of extrinsic absorption through the creation of oxygen vacancies, rather than excitation of the intrinsic absorption band of bulk TiO2 . The PTIO can be recycled with little depression of the photocatalytic activity. After six cycles, the photocatalytic activity of the PTIO film was still higher than 98%.展开更多
Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. T...Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. This review provided a deep analysis of gadolinium applications in photoenergy processes and devices with the main focus on explanation of gadolinium doping effect on physicochemical properties of titania.展开更多
文摘P‐doped TiO2 (PTIO) thin‐films with different P contents were prepared using a sol‐gel method. The thin‐film samples were characterized using various techniques. The photocatalytic activity was evaluated by decomposing butyl benzyl phthalate under visible‐light irradiation. The results showed that the transformation of anatase to the rutile phase was inhibited and grain growth of TiO2 was prevented by P doping. The results confirm that the doped P atoms existed in two chemical forms, and those incorporated in the TiO2 lattice may play a positive role in photocatalysis. The high photocatalytic activities of the PTIO thin‐films may be the result of extrinsic absorption through the creation of oxygen vacancies, rather than excitation of the intrinsic absorption band of bulk TiO2 . The PTIO can be recycled with little depression of the photocatalytic activity. After six cycles, the photocatalytic activity of the PTIO film was still higher than 98%.
基金the Ministry of Education, Youth and Sport of the Czech Republic for support through project CZ.1.07/2.3.00/30.0005, as well as the Central European Institute of Technology (CEITEC)
文摘多相光催化是一种非常有效的降解各种水污染物的方法.本文以稀土(镝和镨)掺杂的TiO2为光催化剂,考察了制备条件对其物理性质和光催化性能的影响.采用溶胶-凝胶法和不同条件(反应温度450,550,650 oC;反应时间4,8,12 h)的固态反应法制备了TiO2样品.运用X射线衍射分析了该样品的晶相,发现只存在锐钛矿相,并得到Raman光谱的证实.同时采用扫描电镜观察了样品的结构和粒径;以BET法计算了其比表面积;运用紫外-可见光漫反射光谱测得了样品的带隙能量.通过测量紫外光照射下常用除草剂吡唑草胺的降解速率评价了样品的光催化活性,反应过程中吡唑草胺的浓度用高效液相色谱分析.结果表明,稀土掺杂使得TiO2吸收边红移,并提高了其光催化活性;制备时最优的固态反应条件为550 oC反应8 h.
文摘Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. This review provided a deep analysis of gadolinium applications in photoenergy processes and devices with the main focus on explanation of gadolinium doping effect on physicochemical properties of titania.