The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. ...The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. Deep drawing and stretch formability were also tested through limiting drawing ratio (LDR) and limiting dome height (LDH) tests. Finally, post forming mechanical property testing was conducted to investigate the effects of exposure to warm forming temperatures on the mechanical properties. Results show that deep drawing and stretch formability of AA7075 can be significantly improved when the blank is heated to 140-220 °C. At temperature over 260 °C, formability and post forming mechanical properties begin to decrease due to the effect of the heating and forming processes on the material's temper.展开更多
Lowest temperature and snow accumulation rate are preconditions for retrieving the oldest ice core from the polar ice sheets. The 10-m depth firn temperature at Dome A, the summit of the Antarctic Ice Sheet, recorded ...Lowest temperature and snow accumulation rate are preconditions for retrieving the oldest ice core from the polar ice sheets. The 10-m depth firn temperature at Dome A, the summit of the Antarctic Ice Sheet, recorded by an automatic weather station (AWS) was -58.3℃ in 2005 and -58.2℃ in 2006, re-spectively. The 10-m firn temperature is an approximation of the annual mean air temperature (AMAT), and this is the lowest AMAT that has been recorded on the surface of the Earth. The stable isotopic ratios (δ 18O and δ D) of surface snow at Dome A are also lower than at other ice sheet domes along the East Antarctic Ice Divide such as Dome C, Dome F, Dome B and Vostok. These facts indicate that Dome A is the "pole of cold" on the Earth. The total amount of snow accumulation rate in 2005 and 2006 was only 0.16 cm, equaling 0.016 m water equivalent per year, the lowest precipitation ever recorded from Antarctica. Preliminary evidences indicate that Dome A is a candidate site for recovering the oldest ice core.展开更多
Based on the horizon of β activity and the density profiles, recent accumulation rate at Dome A, Ant-arctica is calculated to be 0.023 m water equivalent per year. This value is comparative to the accumu-lation rates...Based on the horizon of β activity and the density profiles, recent accumulation rate at Dome A, Ant-arctica is calculated to be 0.023 m water equivalent per year. This value is comparative to the accumu-lation rates deduced from the other inland sites of Antarctica. Clear-sky precipitation (or diamond dust) dominates the total precipitation at Dome A region. We speculate Dome A as a potential site to discover the oldest ice in Antarctica due to its tremendous ice thickness (>3000 m), extremely low accumulation rate, and low ice velocity.展开更多
In Shougang Jingtang 5 500m 3 huge blast furnace ( BF ) design , dome combustion hot blast stove ( DCHBS ) technology is developed.DCHBS process is optimized and integrated , and reasonable hot blast stove ( HBS ) tec...In Shougang Jingtang 5 500m 3 huge blast furnace ( BF ) design , dome combustion hot blast stove ( DCHBS ) technology is developed.DCHBS process is optimized and integrated , and reasonable hot blast stove ( HBS ) technical parameters are determined.Mathematic model is established and adopted by computational fluid dynamics ( CFD ) .The transmission theory is studied for hot blast stove combustion and gas flow , and distribution results of HBS velocity field , CO density field and temperature field are achieved.Physical test model and hot trail unit are established , and the numeral calculation result is verified through test and investigation.3-D simulation design is adopted.HBS process flow and process layout are optimized and designed.Combustion air two-stage high temperature preheating technology is designed and developed.Two sets of small size DCHBSs are adopted to preheat the combustion air to 520-600℃.With the precondition of BF gas combustion , the hot blast stove dome temperature can exceed 1 420 ℃. According to DCHBS technical features , reasonable refractory structure is designed.Effective technical measures are adopted to prevent hot blast stove shell intercrystalline stress corrosion.Hot blast stove hot pipe and lining system are optimized and designed.After blowing in , the blast temperature keeps increasing , and the monthly average blast temperature reaches 1 300℃ when burning single BF gas.展开更多
文摘The formability of aluminum alloy AA7075 at elevated temperature was investigated through experiment. Stress-strain relationship at different temperatures and forming speeds were investigated through tensile testing. Deep drawing and stretch formability were also tested through limiting drawing ratio (LDR) and limiting dome height (LDH) tests. Finally, post forming mechanical property testing was conducted to investigate the effects of exposure to warm forming temperatures on the mechanical properties. Results show that deep drawing and stretch formability of AA7075 can be significantly improved when the blank is heated to 140-220 °C. At temperature over 260 °C, formability and post forming mechanical properties begin to decrease due to the effect of the heating and forming processes on the material's temper.
基金the National Natural Science Foundation of China (Grant Nos. 40620120112 and 40776002)Chinese Academy of Sciences (Grant No. KZCX-SW-354)the Hundred-Talent Project of Chinese Academy of Sciences
文摘Lowest temperature and snow accumulation rate are preconditions for retrieving the oldest ice core from the polar ice sheets. The 10-m depth firn temperature at Dome A, the summit of the Antarctic Ice Sheet, recorded by an automatic weather station (AWS) was -58.3℃ in 2005 and -58.2℃ in 2006, re-spectively. The 10-m firn temperature is an approximation of the annual mean air temperature (AMAT), and this is the lowest AMAT that has been recorded on the surface of the Earth. The stable isotopic ratios (δ 18O and δ D) of surface snow at Dome A are also lower than at other ice sheet domes along the East Antarctic Ice Divide such as Dome C, Dome F, Dome B and Vostok. These facts indicate that Dome A is the "pole of cold" on the Earth. The total amount of snow accumulation rate in 2005 and 2006 was only 0.16 cm, equaling 0.016 m water equivalent per year, the lowest precipitation ever recorded from Antarctica. Preliminary evidences indicate that Dome A is a candidate site for recovering the oldest ice core.
基金the National Natural Science Foundation of China (Grant No. 40576001)the Chinese Academy of Sciences (Grant No. 100 Talents Project and KZCX3-SW-354)
文摘Based on the horizon of β activity and the density profiles, recent accumulation rate at Dome A, Ant-arctica is calculated to be 0.023 m water equivalent per year. This value is comparative to the accumu-lation rates deduced from the other inland sites of Antarctica. Clear-sky precipitation (or diamond dust) dominates the total precipitation at Dome A region. We speculate Dome A as a potential site to discover the oldest ice in Antarctica due to its tremendous ice thickness (>3000 m), extremely low accumulation rate, and low ice velocity.
文摘In Shougang Jingtang 5 500m 3 huge blast furnace ( BF ) design , dome combustion hot blast stove ( DCHBS ) technology is developed.DCHBS process is optimized and integrated , and reasonable hot blast stove ( HBS ) technical parameters are determined.Mathematic model is established and adopted by computational fluid dynamics ( CFD ) .The transmission theory is studied for hot blast stove combustion and gas flow , and distribution results of HBS velocity field , CO density field and temperature field are achieved.Physical test model and hot trail unit are established , and the numeral calculation result is verified through test and investigation.3-D simulation design is adopted.HBS process flow and process layout are optimized and designed.Combustion air two-stage high temperature preheating technology is designed and developed.Two sets of small size DCHBSs are adopted to preheat the combustion air to 520-600℃.With the precondition of BF gas combustion , the hot blast stove dome temperature can exceed 1 420 ℃. According to DCHBS technical features , reasonable refractory structure is designed.Effective technical measures are adopted to prevent hot blast stove shell intercrystalline stress corrosion.Hot blast stove hot pipe and lining system are optimized and designed.After blowing in , the blast temperature keeps increasing , and the monthly average blast temperature reaches 1 300℃ when burning single BF gas.