The effects of Mg 2+, Ca 2+, Mn 2+, Co 2+ and Ni 2+ on the thermal stability of Salmon Sperm DNA were investigated by employing differential scanning calorimetry method. For the divalent cations, the shielding effect ...The effects of Mg 2+, Ca 2+, Mn 2+, Co 2+ and Ni 2+ on the thermal stability of Salmon Sperm DNA were investigated by employing differential scanning calorimetry method. For the divalent cations, the shielding effect plays the dominant role in the interaction of nucleic acid chains when they are in low concentrations, as reflected in the moderate increasing of DNA melting temperature. Along with increasing concentration, both alkaline earth metal ions and transitional metal ions were found to lower the DNA melting temperature, indicating possible direct interaction between the divalent cations with the bases in the DNA molecules. The effectiveness increases with the order Mg 2+, Ca 2+, Mn 2+, Co 2+ and Ni 2+. It was found for the first time that the presence of Mn 2+ triggered the biphasic-melting behavior of the Salmon Sperm DNA when the concentration of the cation was increased to a value about 2 times of phosphorous in DNA.展开更多
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,...Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.展开更多
Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction f...Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction from the readily available reactant.Their energetic salts with high nitrogen content were proved to be rare examples of divalent monocyclic/fused cyclic cationic salts according to the single crystal analyses.The structure of intermediate B was also identified and verified by its trivalent cation crystal 17.5H_2O indirectly.Energetic compounds 2-8 and 10-17 were fully characterized by NMR spectroscopy,infrared spectroscopy,differential scanning calorimetry,elemental analysis.These energetic salts exhibit good thermal stability with decomposition temperatures ranged from 182℃to 245℃.The sensitivity of compounds 2,6,10 and 14 is similar or superior to that of RDX while the others were much more insensitive to mechanical stimulate.Furthermore,detonation velocity of 10(8843 m/s)surpass that of RDX(D=8795 m/s).Considering the high gas production volume(≥808 L/kg)of 2,4,10and 12,constant-volume combustion experiments were conduct to evaluate their gas production capacities specifically.These compounds possess much higher maximum gas-production pressures(P_(max):7.88-10.08 MPa)than the commonly used reagent guanidine nitrate(GN:P_(max)=4.20 MPa),which indicate their strong gas production capacity.展开更多
Adsorption properties of brick for the removal of divalent cations increased significantly after this material were pre-activated by HCl and subsequently impregnated with ferrihydrite. Scanning electron microscopy (SE...Adsorption properties of brick for the removal of divalent cations increased significantly after this material were pre-activated by HCl and subsequently impregnated with ferrihydrite. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that ferrihydrite was preferentially attached to clays (mainly to metakaolinite) and possessed Na atoms at levels higher than those observed in iron-poor aggregates. Sodium is bound to hydroxyl groups which have a function as reactive sites and give rise to surface charge. Zeta potential measurements were conducted to determine the isoelectric point (IEP) and salt-addition method was used to assess the point of zero charge (PZC) of this brick. Modified brick has a positive charge in water up to pH ≈ 3.2 and negative charge above this pH. Moreover, pH was found to be the most important factor affecting the adsorption process, suggesting the possible implication of electrostatic forces at the brick-water interface. The complexation model proposed by James and Healy was applied to our system: theoretical data on free-energy changes due to effects associated both with electrostatic attraction and solvation, were found to be in agreement with those determined from kinetic experiments. Column experiments permitted further to show that adsorption reactions were strongly inhibited by addition of an inert electrolyte (like NaNO3). Under this condition, ionic strength increased and most surface sites of the brick would be occupied by Na+ ions, leading to a charge neutralization and thereby a depletion of electrostatic forces.展开更多
Ventral tegmental area dopamine (DA VTA) neurons are important for the reinforcing effects of drugs of abuse such as ethanol and nicotine. We have previously shown that M-current (IM) regulates the excitability of DA ...Ventral tegmental area dopamine (DA VTA) neurons are important for the reinforcing effects of drugs of abuse such as ethanol and nicotine. We have previously shown that M-current (IM) regulates the excitability of DA VTA neurons. Zinc (Zn2+) contributes to the regulation of neuronal excitation as a neuromodulator. In the present study, we investigated zinc effect on the properties of IM and the spontaneous firing frequency of DA VTA neurons. The standard deactivation protocol was used to measure IM during voltage-clamp recording with a hyperpolarizing voltage step to ﹣40 mV from a holding potential (VH) of ﹣25 mV. Zn2+ (100 μM) inhibited IM amplitude and IM recovered completely from the inhibition after the washout of Zn2+. Zn2+ inhibited IM in a concentration-dependent manner (IC50: 5.8 μM). When hyperpolarizing voltage steps were given to ﹣65 mV (in 10 mV increments) from a VH of ﹣25 mV, Zn2+ (100 μM) reduced IM amplitude at each voltage and zinc inhibition of IM was not voltage-dependent. Zn2+ increased the spontaneous firing frequency of DA VTA neurons in a concentration-dependent manner, suggesting that Zn2+ causes excitation of DA VTA neurons through an action on IM. IM of DA VTA neurons was inhibited by 100 μM divalent cations in increasing order of potency: Ba2+ (16%) 2+ (25%) 2+ (40%) 2+ (59%) 2+ (67%). These results suggest that Zn2+ may exert physiologically significant regulation of neuronal excitability in DA VTA neurons.展开更多
By analyzing the cation composition of pore water in the soil samples of Ariake Bay sediments, the present study assesses the development of quick clay by leaching in both the original and seawater-saturated soil samp...By analyzing the cation composition of pore water in the soil samples of Ariake Bay sediments, the present study assesses the development of quick clay by leaching in both the original and seawater-saturated soil samples. Divalent cations were dominant in the pore water of the original soil sample, whereas Na+ was the major cation in that of the seawater-saturated soil sample. The cation proportion in the pore water for both soil samples remained the same after leaching. The difference in pore water cation composition between the original and seawater-saturated soil samples affected how their geotechnical properties changed through leaching. The undisturbed shear strength of both soil samples remained almost the same, but a large disparity between the soil samples was observed in the remolded shear strength: it remained almost the same in the original soil sample after leaching. Hence, sensitivity was not increased and quick clay was not formed. However, in the seawater-saturated soil sample, the remolded shear strength decreased to a great extent, and quick clay with a sensitivity exceeding 700 developed. The lack of development of quick clay in the original soil sample is attributed to the dominance of divalent cations in the pore water, and the development of quick clay in the seawater-saturated soil sample is ascribed to the dominance of Na+ in the pore water.展开更多
Removal of metal ions from water can not only alleviate the scaling problem of domestic and industrial water,but also solve the water safety problem caused by heavy metal ion pollution.Here,we fabricate a positively c...Removal of metal ions from water can not only alleviate the scaling problem of domestic and industrial water,but also solve the water safety problem caused by heavy metal ion pollution.Here,we fabricate a positively charged nanofiltration membrane via surfactant-assembly regulated interfacial polymerization(SARIP)of 2-methylpiperazine(MPIP)and trimesoyl chloride(TMC).Due to the existence of methyl substituent,MPIP has lower reactive activity than piperazine(PIP)but stronger affinity to hexane,resulting in a nanofiltration(NF)membrane with an opposite surface charge and a loose polyamide active layer.Interestingly,with the help of sodium dodecyl sulfate(SDS)assembly at the water/hexane,the reactivity between MPIP and TMC was obviously increased and caused in turn the formation of a positively charged polyamide active layer with a smaller pore size,as well as with a narrower pore size distribution.The resulting membrane shows a highly efficient removal of divalent cations from water,of which the rejections of MgCl_(2),CoCl_(2)and NiCl_(2)are higher than 98.8%,98.0%and 98.0%,respectively,which are better than those of most of other positively charged NF membranes reported in literatures.展开更多
文摘The effects of Mg 2+, Ca 2+, Mn 2+, Co 2+ and Ni 2+ on the thermal stability of Salmon Sperm DNA were investigated by employing differential scanning calorimetry method. For the divalent cations, the shielding effect plays the dominant role in the interaction of nucleic acid chains when they are in low concentrations, as reflected in the moderate increasing of DNA melting temperature. Along with increasing concentration, both alkaline earth metal ions and transitional metal ions were found to lower the DNA melting temperature, indicating possible direct interaction between the divalent cations with the bases in the DNA molecules. The effectiveness increases with the order Mg 2+, Ca 2+, Mn 2+, Co 2+ and Ni 2+. It was found for the first time that the presence of Mn 2+ triggered the biphasic-melting behavior of the Salmon Sperm DNA when the concentration of the cation was increased to a value about 2 times of phosphorous in DNA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12222506,12347102,and 12174184).
文摘Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers.
基金The project was supported by the National Natural Science Foundation of China(21422208)the Special Program for Applied Research on Super Computation of the Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(U1501501)~~
基金supported by the National Natural Science Foundation of China(No.21875110,22075143)the Science Challenge Project(No.TZ2018004)the Qing Lan Project for the grant。
文摘Monocyclic nitrogen-rich 3-(aminomethyl)-4,5-diamine-1,2,4-triazole(1)and fused cyclic 3,7-diamine-6-(aminomethyl)-[1,2,4]triazolo[4,3-b][1,2,4]triazole(9)were synthesized through the convenient cyclization reaction from the readily available reactant.Their energetic salts with high nitrogen content were proved to be rare examples of divalent monocyclic/fused cyclic cationic salts according to the single crystal analyses.The structure of intermediate B was also identified and verified by its trivalent cation crystal 17.5H_2O indirectly.Energetic compounds 2-8 and 10-17 were fully characterized by NMR spectroscopy,infrared spectroscopy,differential scanning calorimetry,elemental analysis.These energetic salts exhibit good thermal stability with decomposition temperatures ranged from 182℃to 245℃.The sensitivity of compounds 2,6,10 and 14 is similar or superior to that of RDX while the others were much more insensitive to mechanical stimulate.Furthermore,detonation velocity of 10(8843 m/s)surpass that of RDX(D=8795 m/s).Considering the high gas production volume(≥808 L/kg)of 2,4,10and 12,constant-volume combustion experiments were conduct to evaluate their gas production capacities specifically.These compounds possess much higher maximum gas-production pressures(P_(max):7.88-10.08 MPa)than the commonly used reagent guanidine nitrate(GN:P_(max)=4.20 MPa),which indicate their strong gas production capacity.
文摘Adsorption properties of brick for the removal of divalent cations increased significantly after this material were pre-activated by HCl and subsequently impregnated with ferrihydrite. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that ferrihydrite was preferentially attached to clays (mainly to metakaolinite) and possessed Na atoms at levels higher than those observed in iron-poor aggregates. Sodium is bound to hydroxyl groups which have a function as reactive sites and give rise to surface charge. Zeta potential measurements were conducted to determine the isoelectric point (IEP) and salt-addition method was used to assess the point of zero charge (PZC) of this brick. Modified brick has a positive charge in water up to pH ≈ 3.2 and negative charge above this pH. Moreover, pH was found to be the most important factor affecting the adsorption process, suggesting the possible implication of electrostatic forces at the brick-water interface. The complexation model proposed by James and Healy was applied to our system: theoretical data on free-energy changes due to effects associated both with electrostatic attraction and solvation, were found to be in agreement with those determined from kinetic experiments. Column experiments permitted further to show that adsorption reactions were strongly inhibited by addition of an inert electrolyte (like NaNO3). Under this condition, ionic strength increased and most surface sites of the brick would be occupied by Na+ ions, leading to a charge neutralization and thereby a depletion of electrostatic forces.
文摘Ventral tegmental area dopamine (DA VTA) neurons are important for the reinforcing effects of drugs of abuse such as ethanol and nicotine. We have previously shown that M-current (IM) regulates the excitability of DA VTA neurons. Zinc (Zn2+) contributes to the regulation of neuronal excitation as a neuromodulator. In the present study, we investigated zinc effect on the properties of IM and the spontaneous firing frequency of DA VTA neurons. The standard deactivation protocol was used to measure IM during voltage-clamp recording with a hyperpolarizing voltage step to ﹣40 mV from a holding potential (VH) of ﹣25 mV. Zn2+ (100 μM) inhibited IM amplitude and IM recovered completely from the inhibition after the washout of Zn2+. Zn2+ inhibited IM in a concentration-dependent manner (IC50: 5.8 μM). When hyperpolarizing voltage steps were given to ﹣65 mV (in 10 mV increments) from a VH of ﹣25 mV, Zn2+ (100 μM) reduced IM amplitude at each voltage and zinc inhibition of IM was not voltage-dependent. Zn2+ increased the spontaneous firing frequency of DA VTA neurons in a concentration-dependent manner, suggesting that Zn2+ causes excitation of DA VTA neurons through an action on IM. IM of DA VTA neurons was inhibited by 100 μM divalent cations in increasing order of potency: Ba2+ (16%) 2+ (25%) 2+ (40%) 2+ (59%) 2+ (67%). These results suggest that Zn2+ may exert physiologically significant regulation of neuronal excitability in DA VTA neurons.
文摘By analyzing the cation composition of pore water in the soil samples of Ariake Bay sediments, the present study assesses the development of quick clay by leaching in both the original and seawater-saturated soil samples. Divalent cations were dominant in the pore water of the original soil sample, whereas Na+ was the major cation in that of the seawater-saturated soil sample. The cation proportion in the pore water for both soil samples remained the same after leaching. The difference in pore water cation composition between the original and seawater-saturated soil samples affected how their geotechnical properties changed through leaching. The undisturbed shear strength of both soil samples remained almost the same, but a large disparity between the soil samples was observed in the remolded shear strength: it remained almost the same in the original soil sample after leaching. Hence, sensitivity was not increased and quick clay was not formed. However, in the seawater-saturated soil sample, the remolded shear strength decreased to a great extent, and quick clay with a sensitivity exceeding 700 developed. The lack of development of quick clay in the original soil sample is attributed to the dominance of divalent cations in the pore water, and the development of quick clay in the seawater-saturated soil sample is ascribed to the dominance of Na+ in the pore water.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFA0705800)the National Natural Science Foundation of China(Nos.21988102,51873230)+1 种基金the National Natural Science Funds for Distinguished Young Scholars of China(No.51625306)the Youth Innovation Promotion Association of Chinese Academy of Sciences.
文摘Removal of metal ions from water can not only alleviate the scaling problem of domestic and industrial water,but also solve the water safety problem caused by heavy metal ion pollution.Here,we fabricate a positively charged nanofiltration membrane via surfactant-assembly regulated interfacial polymerization(SARIP)of 2-methylpiperazine(MPIP)and trimesoyl chloride(TMC).Due to the existence of methyl substituent,MPIP has lower reactive activity than piperazine(PIP)but stronger affinity to hexane,resulting in a nanofiltration(NF)membrane with an opposite surface charge and a loose polyamide active layer.Interestingly,with the help of sodium dodecyl sulfate(SDS)assembly at the water/hexane,the reactivity between MPIP and TMC was obviously increased and caused in turn the formation of a positively charged polyamide active layer with a smaller pore size,as well as with a narrower pore size distribution.The resulting membrane shows a highly efficient removal of divalent cations from water,of which the rejections of MgCl_(2),CoCl_(2)and NiCl_(2)are higher than 98.8%,98.0%and 98.0%,respectively,which are better than those of most of other positively charged NF membranes reported in literatures.