In this paper,the 3D leader–follower formation control problem,which focuses on swarms of fixed-wing Unmanned Aerial Vehicles(UAVs)with motion constraints and disturbances,has been investigated.Original formation err...In this paper,the 3D leader–follower formation control problem,which focuses on swarms of fixed-wing Unmanned Aerial Vehicles(UAVs)with motion constraints and disturbances,has been investigated.Original formation errors of the follower UAVs have been transformed into the Frenet-Serret frame.Formation control laws satisfying five motion constraints(i.e.,linear velocity,linear acceleration,heading rate,climb rate and climb angle)have been designed.The convergence of the control laws has been discussed via the Lyapunov stability tool.In addition,to address the unknown disturbances,an adaptive disturbance observer is exploited.Furthermore,formation control laws involving estimated disturbances are presented as well.The collision avoidance between UAVs is achieved with the artificial potential method.Simulation results obtained using four scenarios verify the effectiveness of the proposed method in situations with constant disturbances and varying disturbances,as well as without disturbances.展开更多
A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is se...A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.展开更多
基金Supported by Program for New Century Excellent Talents in University (NCET-04-0283), the Funds for Creative Research Groups of China (60521003), Program for Changjiang Scholars and Innovative Research Team in University (IRT0421), the State Key Program of National Natural Science of China (60534010), National Natural Science Foundation of China (60674021), the Funds of Doctoral Program of Ministry of Education of China (20060145019), and the 111 Proiect (B08015)
基金co-supported by the National Natural Science Foundation of China(Nos.61803353 and U19B2029)the China Postdoctoral Science Foundation(No.2017M620858)。
文摘In this paper,the 3D leader–follower formation control problem,which focuses on swarms of fixed-wing Unmanned Aerial Vehicles(UAVs)with motion constraints and disturbances,has been investigated.Original formation errors of the follower UAVs have been transformed into the Frenet-Serret frame.Formation control laws satisfying five motion constraints(i.e.,linear velocity,linear acceleration,heading rate,climb rate and climb angle)have been designed.The convergence of the control laws has been discussed via the Lyapunov stability tool.In addition,to address the unknown disturbances,an adaptive disturbance observer is exploited.Furthermore,formation control laws involving estimated disturbances are presented as well.The collision avoidance between UAVs is achieved with the artificial potential method.Simulation results obtained using four scenarios verify the effectiveness of the proposed method in situations with constant disturbances and varying disturbances,as well as without disturbances.
基金supported by Program for New Century Excellent Talents in University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.