Based on observed wind waves, the relationships between wave spectrum products and wave characteristics are established successfully, and the apparent energy distribution of sea waves is expressed as a function of wav...Based on observed wind waves, the relationships between wave spectrum products and wave characteristics are established successfully, and the apparent energy distribution of sea waves is expressed as a function of wave characteristics.展开更多
The rate of change of wave surface elevation is of much importance in ocean engineering, especially for the determination of the limitation of wave breaking. This paper gives a kind of joint distribution of wave perio...The rate of change of wave surface elevation is of much importance in ocean engineering, especially for the determination of the limitation of wave breaking. This paper gives a kind of joint distribution of wave periods and the rate of change of wave surface elevation by means of calculation of the two-order to four-order moment of the frequency spectrum based on the linear wave theory. For the first time, the distribution density function of wave periods determined by peaks is provided, and the conclusion is drawn that the rate of change of wave surface elevation obeys the Rayleigh distribution.展开更多
本文利用长江口附近海域2011年1月—2011年12月长达1年的海浪实测资料,对海浪基本要素及大浪过程与热带气旋活动的关系进行统计分析,并选取一个典型台风过程的波浪进行研究。研究结果表明:观测点年有效波高H平均值为1.2 m, 1月平均有效...本文利用长江口附近海域2011年1月—2011年12月长达1年的海浪实测资料,对海浪基本要素及大浪过程与热带气旋活动的关系进行统计分析,并选取一个典型台风过程的波浪进行研究。研究结果表明:观测点年有效波高H平均值为1.2 m, 1月平均有效波高H值最大,受台风影响,最大有效波高出现在8月,达7.4 m;观测期间,有效波高H多集中在2 m以下范围内,有效周期T在3~14 s之间;本地区的有效波高H和风速U具有较好的指数关系;强台风“梅花”活动期间,波型变化与一般台风浪波型的演变规律较为一致。展开更多
In this paper, by using the wave data from a few oceanographic observation stations in the coastal zone of the Yellow Sea, the East China Sea and the South China Sea, the long-term joint distribution of the one-tenth ...In this paper, by using the wave data from a few oceanographic observation stations in the coastal zone of the Yellow Sea, the East China Sea and the South China Sea, the long-term joint distribution of the one-tenth large (or significant) wave height with average period is studied. The statistical data demonstrate that the long- term distribution of the one- tenth wave height or average period fits the log-normal distribution, thus the joint distribution also fits the two-dimensional log-normal distribution. Then the conditional probability distribution of the average period is derived, and the range as well as the mode of the average wave period corresponding to a certain return period of wave height can be calculated easily.展开更多
By analysing the scatter diagrams of characteristic the wave height H and the period T on the basis of instrumental data from various ocean wave stations, we found that the conditional expectation and standard deviati...By analysing the scatter diagrams of characteristic the wave height H and the period T on the basis of instrumental data from various ocean wave stations, we found that the conditional expectation and standard deviation of wave period for a given wave height can be better predicted by using the equations of normal linear regression rather than by those based on the log- normal law. The latter was implied in Ochi' s bivariate log-normal model(Ochi. 1978) for the long-term joint distribution of H and T. With the expectation and standard deviation predicted by the normal linear regression equations and applying proper types of distribution, we have obtained the conditional distribution of T for given H. Then combining this conditional P(T / H) with long-term marginal distribution of the wave height P(H) we establish a new parameterized model for the long-term joint distribution P(H,T). As an example of the application of the new model we give a method for estimating wave period associated with an extreme wave height.展开更多
文摘Based on observed wind waves, the relationships between wave spectrum products and wave characteristics are established successfully, and the apparent energy distribution of sea waves is expressed as a function of wave characteristics.
基金National Natural Science Foundation of China.(No.49776285)
文摘The rate of change of wave surface elevation is of much importance in ocean engineering, especially for the determination of the limitation of wave breaking. This paper gives a kind of joint distribution of wave periods and the rate of change of wave surface elevation by means of calculation of the two-order to four-order moment of the frequency spectrum based on the linear wave theory. For the first time, the distribution density function of wave periods determined by peaks is provided, and the conclusion is drawn that the rate of change of wave surface elevation obeys the Rayleigh distribution.
文摘In this paper, by using the wave data from a few oceanographic observation stations in the coastal zone of the Yellow Sea, the East China Sea and the South China Sea, the long-term joint distribution of the one-tenth large (or significant) wave height with average period is studied. The statistical data demonstrate that the long- term distribution of the one- tenth wave height or average period fits the log-normal distribution, thus the joint distribution also fits the two-dimensional log-normal distribution. Then the conditional probability distribution of the average period is derived, and the range as well as the mode of the average wave period corresponding to a certain return period of wave height can be calculated easily.
文摘By analysing the scatter diagrams of characteristic the wave height H and the period T on the basis of instrumental data from various ocean wave stations, we found that the conditional expectation and standard deviation of wave period for a given wave height can be better predicted by using the equations of normal linear regression rather than by those based on the log- normal law. The latter was implied in Ochi' s bivariate log-normal model(Ochi. 1978) for the long-term joint distribution of H and T. With the expectation and standard deviation predicted by the normal linear regression equations and applying proper types of distribution, we have obtained the conditional distribution of T for given H. Then combining this conditional P(T / H) with long-term marginal distribution of the wave height P(H) we establish a new parameterized model for the long-term joint distribution P(H,T). As an example of the application of the new model we give a method for estimating wave period associated with an extreme wave height.