分布式视频编码(Distributed Video Coding,DVC)是一种新颖的视频压缩方法,具有极低的编码复杂度和良好的抗噪声鲁棒性。为了使人们对该编码方法有所了解,该文首先详细介绍了分布式视频编码的理论基础和特点,然后讨论了分布式视频编码...分布式视频编码(Distributed Video Coding,DVC)是一种新颖的视频压缩方法,具有极低的编码复杂度和良好的抗噪声鲁棒性。为了使人们对该编码方法有所了解,该文首先详细介绍了分布式视频编码的理论基础和特点,然后讨论了分布式视频编码的两大关键技术,包括编码端高效压缩和解码端边信息(side information)插值;最后总结分析了分布式视频编码在低复杂度编码和视频信号鲁棒传输等两大应用领域的研究现状,并对其研究前景进行了探讨。展开更多
与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统...与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统的改进算法,在解码端改善了关键帧之间的运动矢量获取以及采用重叠块运动补偿来生成边信息。通过对大量测试序列的实验,验证了改进算法的率失真性能得到改善。展开更多
Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky enco...Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky encoders are not suitable for applications like wireless low power surveillance, multimedia sensor networks, wireless PC cameras, mobile camera phones etc. New video coding scheme based on the principle of distributed source coding is looked upon in this paper. This scheme supports a low complexity encoder, at the same time trying to achieve the rate distortion performance of conventional video codecs. Current im-plementation uses LDPC codes for syndrome coding.展开更多
在可分级视频编码(SVC,scalable video coding)的框架下,利用分布式视频编码(DVC,distributed video coding)技术,设计了一种低编码复杂度的SVC方案。该系统具有空间可分级的特性,各分层中仅用到了传统的帧内编码技术和DVC技术,最大限...在可分级视频编码(SVC,scalable video coding)的框架下,利用分布式视频编码(DVC,distributed video coding)技术,设计了一种低编码复杂度的SVC方案。该系统具有空间可分级的特性,各分层中仅用到了传统的帧内编码技术和DVC技术,最大限度的减小了SVC系统的编码复杂度。在该系统中,充分利用分级系统的特点,在增强层(EL)的解码中提出了一种基于二次搜索和残差补偿(DSRCB)的边信息(SI)生成算法和一种基于时空域虚拟噪声模型的估计算法,并针对各分层图像的频域特性优化了量化模型。实验表明,与基于传统视频编码技术的SVC系统相比,该系统具有极低的复杂度,性能超过了非可分级的DVC系统,而且在较小的GOP(group of pictures)尺寸下获得了接近传统SVC系统的性能。展开更多
针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第...针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第N层的低频小波系数采用均匀量化方案,对其他层高频小波系数采用非均匀量化方案。针对高频系数的非均匀量化,对处于"0"左右的高频系数采用较大的量化步长,随着高频系数幅度值的增大,量化步长逐渐减小,量化逐渐精细,从而提升深度图中的边缘细节质量。实验结果表明,对于边缘较多且变化较明显的"Dancer"和"Poznan Hall2"深度序列,该算法能够有效地提高二者的边缘信息质量从而提高其率失真(R-D)性能,最高可达1.2 d B;而对于边缘区域较小且较为模糊的"Newspaper"和"Balloons"深度序列,系统的R-D性能也能被提升0.3 d B左右。展开更多
为改善分布式压缩视频感知(distributed compressive video sensing,DCVS)系统的视频帧图像重构质量,以实时视频传输为应用场景,提出了一种基于双重稀疏模型的图像解码算法。解码端由相邻的已重构关键帧产生边信息(sideinformatio...为改善分布式压缩视频感知(distributed compressive video sensing,DCVS)系统的视频帧图像重构质量,以实时视频传输为应用场景,提出了一种基于双重稀疏模型的图像解码算法。解码端由相邻的已重构关键帧产生边信息(sideinformation,SI);根据双重稀疏模型思想,分离样本图像小波域下不同尺度的子带,分别使用K均值奇异值分解(K-means singular value decomposition,K—SVD)算法得到具有多尺度特性的冗余字典,结合梯度投影稀疏重建(gradient pursuit for sparsereconstruction,GPSR)算法,完成对非关键帧的重构。仿真结果表明,在相同压缩率下,相比传统K—SVD字典训练方法,本文所提出的方法对应的视频帧图像重构峰值信噪比(peak signal to noise ratio,PSNR)可获得0.5~1.5dB以上的增益。展开更多
In transform-domain distributed video coding (DVC), the correlation noises (denoted as N) between the source block and its temporal predictor can be modeled as Laplacian random variables. In this paper we propose that...In transform-domain distributed video coding (DVC), the correlation noises (denoted as N) between the source block and its temporal predictor can be modeled as Laplacian random variables. In this paper we propose that the noises (denoted as N′) between the source block and its co-located block in a reference frame can also be modeled as Laplacian random variables. Furthermore, it is possible to exploit the relationship between N and N′ to improve the performance of the DVC system. A practical scheme based on theoretical insights, the hash signature saving scheme, is proposed. Experimental results show that the proposed scheme saves on average 83.2% of hash signatures, 13.3% of bit-rate, and 3.9% of encoding time.展开更多
文摘分布式视频编码(Distributed Video Coding,DVC)是一种新颖的视频压缩方法,具有极低的编码复杂度和良好的抗噪声鲁棒性。为了使人们对该编码方法有所了解,该文首先详细介绍了分布式视频编码的理论基础和特点,然后讨论了分布式视频编码的两大关键技术,包括编码端高效压缩和解码端边信息(side information)插值;最后总结分析了分布式视频编码在低复杂度编码和视频信号鲁棒传输等两大应用领域的研究现状,并对其研究前景进行了探讨。
文摘与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统的改进算法,在解码端改善了关键帧之间的运动矢量获取以及采用重叠块运动补偿来生成边信息。通过对大量测试序列的实验,验证了改进算法的率失真性能得到改善。
文摘Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky encoders are not suitable for applications like wireless low power surveillance, multimedia sensor networks, wireless PC cameras, mobile camera phones etc. New video coding scheme based on the principle of distributed source coding is looked upon in this paper. This scheme supports a low complexity encoder, at the same time trying to achieve the rate distortion performance of conventional video codecs. Current im-plementation uses LDPC codes for syndrome coding.
文摘在可分级视频编码(SVC,scalable video coding)的框架下,利用分布式视频编码(DVC,distributed video coding)技术,设计了一种低编码复杂度的SVC方案。该系统具有空间可分级的特性,各分层中仅用到了传统的帧内编码技术和DVC技术,最大限度的减小了SVC系统的编码复杂度。在该系统中,充分利用分级系统的特点,在增强层(EL)的解码中提出了一种基于二次搜索和残差补偿(DSRCB)的边信息(SI)生成算法和一种基于时空域虚拟噪声模型的估计算法,并针对各分层图像的频域特性优化了量化模型。实验表明,与基于传统视频编码技术的SVC系统相比,该系统具有极低的复杂度,性能超过了非可分级的DVC系统,而且在较小的GOP(group of pictures)尺寸下获得了接近传统SVC系统的性能。
文摘针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第N层的低频小波系数采用均匀量化方案,对其他层高频小波系数采用非均匀量化方案。针对高频系数的非均匀量化,对处于"0"左右的高频系数采用较大的量化步长,随着高频系数幅度值的增大,量化步长逐渐减小,量化逐渐精细,从而提升深度图中的边缘细节质量。实验结果表明,对于边缘较多且变化较明显的"Dancer"和"Poznan Hall2"深度序列,该算法能够有效地提高二者的边缘信息质量从而提高其率失真(R-D)性能,最高可达1.2 d B;而对于边缘区域较小且较为模糊的"Newspaper"和"Balloons"深度序列,系统的R-D性能也能被提升0.3 d B左右。
文摘为改善分布式压缩视频感知(distributed compressive video sensing,DCVS)系统的视频帧图像重构质量,以实时视频传输为应用场景,提出了一种基于双重稀疏模型的图像解码算法。解码端由相邻的已重构关键帧产生边信息(sideinformation,SI);根据双重稀疏模型思想,分离样本图像小波域下不同尺度的子带,分别使用K均值奇异值分解(K-means singular value decomposition,K—SVD)算法得到具有多尺度特性的冗余字典,结合梯度投影稀疏重建(gradient pursuit for sparsereconstruction,GPSR)算法,完成对非关键帧的重构。仿真结果表明,在相同压缩率下,相比传统K—SVD字典训练方法,本文所提出的方法对应的视频帧图像重构峰值信噪比(peak signal to noise ratio,PSNR)可获得0.5~1.5dB以上的增益。
基金Project supported by the National Basic Research Program (973) of China (No. 2009CB320903)the Program for New Century Excellent Talents in University
文摘In transform-domain distributed video coding (DVC), the correlation noises (denoted as N) between the source block and its temporal predictor can be modeled as Laplacian random variables. In this paper we propose that the noises (denoted as N′) between the source block and its co-located block in a reference frame can also be modeled as Laplacian random variables. Furthermore, it is possible to exploit the relationship between N and N′ to improve the performance of the DVC system. A practical scheme based on theoretical insights, the hash signature saving scheme, is proposed. Experimental results show that the proposed scheme saves on average 83.2% of hash signatures, 13.3% of bit-rate, and 3.9% of encoding time.