We present some new oscillation criteria for second order neutral delay differential equations with distributed deviating argument using the Riccati technique and some inequalities. The results obtained improve and ex...We present some new oscillation criteria for second order neutral delay differential equations with distributed deviating argument using the Riccati technique and some inequalities. The results obtained improve and extend some known results.展开更多
考虑如下具有分布偏差变元的二阶中立型时滞微分方程:(r(t)ψ(x(t))Z′(t))′+integral (p(t,ξ)f[x(g(t,ξ))]dσ(ξ)) from n=a to b=0(t≥t0)的振动性,其中Z(t)=x(t)+q(t)x(t-τ),τ≥0.利用广义的Riccati技巧和积分均值不等式,并借...考虑如下具有分布偏差变元的二阶中立型时滞微分方程:(r(t)ψ(x(t))Z′(t))′+integral (p(t,ξ)f[x(g(t,ξ))]dσ(ξ)) from n=a to b=0(t≥t0)的振动性,其中Z(t)=x(t)+q(t)x(t-τ),τ≥0.利用广义的Riccati技巧和积分均值不等式,并借助于一类新函数Φ(t,s,l)和类函数F,放宽了对函数f的限制,即当f不满足下述条件:存在一个正数M,使得︱f(±uv)︱≥Mf(u)f(v),uv>0时,建立了具有分布偏差变元的二阶中立型时滞微分方程新的振动准则,数值实例验证了所得结果的正确性.展开更多
基金supported by the NNSF of China (10771118)NSF of Shandong Province (ZR2009AM011)
文摘We present some new oscillation criteria for second order neutral delay differential equations with distributed deviating argument using the Riccati technique and some inequalities. The results obtained improve and extend some known results.
文摘考虑如下具有分布偏差变元的二阶中立型时滞微分方程:(r(t)ψ(x(t))Z′(t))′+integral (p(t,ξ)f[x(g(t,ξ))]dσ(ξ)) from n=a to b=0(t≥t0)的振动性,其中Z(t)=x(t)+q(t)x(t-τ),τ≥0.利用广义的Riccati技巧和积分均值不等式,并借助于一类新函数Φ(t,s,l)和类函数F,放宽了对函数f的限制,即当f不满足下述条件:存在一个正数M,使得︱f(±uv)︱≥Mf(u)f(v),uv>0时,建立了具有分布偏差变元的二阶中立型时滞微分方程新的振动准则,数值实例验证了所得结果的正确性.