A proper [h]-total coloring c of a graph G is a proper total coloring c of G using colors of the set [h] ={1, 2,..., h}. Let w(u) denote the sum of the color on a vertex u and colors on all the edges incident to u. ...A proper [h]-total coloring c of a graph G is a proper total coloring c of G using colors of the set [h] ={1, 2,..., h}. Let w(u) denote the sum of the color on a vertex u and colors on all the edges incident to u. For each edge uv ∈ E(G), if w(u) ≠ w(v), then we say the coloring c distinguishes adjacent vertices by sum and call it a neighbor sum distinguishing [h]-total coloring of G. By tndi∑ (G), we denote the smallest value h in such a coloring of G. In this paper, we obtain that G is a graph with at least two vertices, if mad(G) 〈 3, then tndi∑ (G) ≤k + 2 where k = max{△(G), 5}. It partially confirms the conjecture proposed by Pilgniak and Wolniak.展开更多
A total [k]-coloring of a graph G is a mapping φ: V(G) U E(G) →{1, 2, ..., k} such that any two adjacent elements in V(G)UE(G) receive different colors. Let f(v) denote the sum of the colors of a vertex v...A total [k]-coloring of a graph G is a mapping φ: V(G) U E(G) →{1, 2, ..., k} such that any two adjacent elements in V(G)UE(G) receive different colors. Let f(v) denote the sum of the colors of a vertex v and the colors of all incident edges of v. A total [k]-neighbor sum distinguishing-coloring of G is a total [k]-coloring of G such that for each edge uv E E(G), f(u) ≠ f(v). By tt [G, Xsd( J, we denote the smallest value k in such a coloring of G. Pilniak and Woniak conjectured X'sd(G) 〈 A(G) + 3 for any simple graph with maximum degree A(G). This conjecture has been proved for complete graphs, cycles, bipartite graphs, and subcubic graphs. In this paper, we prove that it also holds for Ka-minor free graphs. Furthermore, we show that if G is a Ka-minor flee graph with A(G) 〉 4, then " Xnsd(G) 〈 A(G) + 2. The bound A(G) + 2 is sharp.展开更多
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw...Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.展开更多
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ...A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11161035)the Research Fund for the Doctoral Program of Shandong Jiaotong University+2 种基金supported by National Natural Science Foundation of China(Grant No.11101243)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100131120017)the Scientific Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province of China(Grant No.BS2012SF016)
文摘A proper [h]-total coloring c of a graph G is a proper total coloring c of G using colors of the set [h] ={1, 2,..., h}. Let w(u) denote the sum of the color on a vertex u and colors on all the edges incident to u. For each edge uv ∈ E(G), if w(u) ≠ w(v), then we say the coloring c distinguishes adjacent vertices by sum and call it a neighbor sum distinguishing [h]-total coloring of G. By tndi∑ (G), we denote the smallest value h in such a coloring of G. In this paper, we obtain that G is a graph with at least two vertices, if mad(G) 〈 3, then tndi∑ (G) ≤k + 2 where k = max{△(G), 5}. It partially confirms the conjecture proposed by Pilgniak and Wolniak.
文摘A total [k]-coloring of a graph G is a mapping φ: V(G) U E(G) →{1, 2, ..., k} such that any two adjacent elements in V(G)UE(G) receive different colors. Let f(v) denote the sum of the colors of a vertex v and the colors of all incident edges of v. A total [k]-neighbor sum distinguishing-coloring of G is a total [k]-coloring of G such that for each edge uv E E(G), f(u) ≠ f(v). By tt [G, Xsd( J, we denote the smallest value k in such a coloring of G. Pilniak and Woniak conjectured X'sd(G) 〈 A(G) + 3 for any simple graph with maximum degree A(G). This conjecture has been proved for complete graphs, cycles, bipartite graphs, and subcubic graphs. In this paper, we prove that it also holds for Ka-minor free graphs. Furthermore, we show that if G is a Ka-minor flee graph with A(G) 〉 4, then " Xnsd(G) 〈 A(G) + 2. The bound A(G) + 2 is sharp.
基金the Natural Science Foundation of Gansu Province (No. 3ZS051-A25-025) the Foundation of Gansu Provincial Department of Education (No. 0501-03).
文摘Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△.
基金Supported by the Natural Science Foundation of Gansu Province(3ZS051-A25-025)
文摘A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△.