A numerical model is developed for investigating the evolution of fracture permeability in a coupled fracture-matrix system in the presence of fracture-skin with simultaneous colloidal and bacte- rial transport, by ta...A numerical model is developed for investigating the evolution of fracture permeability in a coupled fracture-matrix system in the presence of fracture-skin with simultaneous colloidal and bacte- rial transport, by taking into account the effects of thermal stress and silica precipitation/dissolution, which is computed using linear reaction kinetics. The non-linear coupled equations are numerically modeled using the fully implicit finite difference method and a constant continuous source is adopted while modeling thermal, contaminant, colloidal and bacterial transport. Due to co-colloid bacterial trans- port under non-isothermal conditions, in a coupled fracture-skin-matrix system, the fracture apertures vary spatially, with a corresponding pressure variation for a constant discharge. A series of numerical experiments were conducted for analyzing the spatial variation of fracture aperture in response to the combined effects of thermal stress, silica precipitation/dissolution, and simultaneous colloidal and bacte- rial transport in the presence of the fracture-skin. The simulation results suggest that temperature and contaminant concentration of the mobile fluid within the fracture increases with reduction in initial frac- ture aperture. The pattern of variation followed by the fracture aperture is nearly the same in the presence and absence of bacterial transport but the magnitude of the fracture aperture is low under the influence of bacterial transport. The variation in the fracture aperture resulting from precipitation-dissolution and thermoelastic stress is significant when the fracture aperture is very low and reduces with increment in fracture aperture. The variation in fracture aperture and pressure remains the same for both undersaturated and supersaturated fluid entering the fracture due to the influence of bacterial transport at the inlet of the fracture.展开更多
Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion an...Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion and ion exchange/adsorption would not affect the basic attributes of hydrothermal ore zoning. Hydrothermal ore zoning belongs essentially to infiltration metasomatic zoning, it results from the formation and propagation of dissolution/precipitation waves through Permeable media. The authors apply the theory of coupled infiltration and dissolution/precipitation reactions in Physicochemical hydrodynamics to studying the structural characteristics of dissolution/precipitation waves, and apply furthermore the coherence principle in dynamic theory of multicomponent coupled systems to revealing the dynamic mechanisms of their formation. The results of investigation verify and develop . C. 's theory of infiltration metasomatic zoning,on the one hand, raising it from the qualitative, equilibrium thermodynamic basis to the quantitative dynamic level;on the other hand, and more importantly, applying theories of Physicochemical hydrodynamics and dynamics of multicomponent coupled systems to bringing to light the dynamic mechanisms of formation of the structure of hydrothermal ore zoning, and advancing a theory of hydrothermal ore zoning, putting forward new ideas on the nature of the problem of hydrothermal ore zoning, the essence of hydrothermal ore zoning and the structural characteristics and mechanisms of formation of hydrothermal ore zoning.展开更多
To investigate long-term CO2 behavior in geological formations and quantification of possible CO2 leaks, it is crucial to inves- tigate the potential mobility of CO2 dissolved in brines over a wide range of spatial an...To investigate long-term CO2 behavior in geological formations and quantification of possible CO2 leaks, it is crucial to inves- tigate the potential mobility of CO2 dissolved in brines over a wide range of spatial and temporal scales and density distribu- tions in geological media. In this work, the mass transfer of aqueous CO2 in brines has been investigated by means of a chemi- cal potential gradient model based on non-equilibrium thermodynamics in which the statistical associating fluid theory equa- tion of state was used to calculate the fugacity coefficient of CO2 in brine. The investigation shows that the interracial concen- tration of aqueous CO2 and the corresponding density both increase with increasing pressure and decreasing temperature; the effective diffusion coefficients decrease initially and then increase with increasing pressure; and the density of the CO2-disolved brines increases with decreasing CO2 pressure in the CO2 dissolution process. The aqueous CO2 concentration profiles obtained by the chemical potential gradient model are considerably different from those obtained by the concentration gradient model, which shows the importance of considering non-ideality, especially when the pressure is high.展开更多
Dissolution of fluorite (CaF2) and/or fluorapatite (FAP) [Cas(PO4)3F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F) contamination. Here, one...Dissolution of fluorite (CaF2) and/or fluorapatite (FAP) [Cas(PO4)3F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F) contamination. Here, one dimensional reactive-transport models are developed to test this mechanism using the published dissolution and precipitation rate kinetics for the mineral pair FAP and calcite. Simulation results correctly show positive correlation between the aqueous concentrations of F and CO2 and negative correlation between F- and Ca^2+. Results also show that precipitation of calcite, contrary to the present understanding, slows down the FAP dissolution by 10G orders of magnitude compared to the FAP dissolution by hydrolysis. For appreciable amount of fluoride contamination rock-water interaction time must be long and of order 106 years.展开更多
文摘A numerical model is developed for investigating the evolution of fracture permeability in a coupled fracture-matrix system in the presence of fracture-skin with simultaneous colloidal and bacte- rial transport, by taking into account the effects of thermal stress and silica precipitation/dissolution, which is computed using linear reaction kinetics. The non-linear coupled equations are numerically modeled using the fully implicit finite difference method and a constant continuous source is adopted while modeling thermal, contaminant, colloidal and bacterial transport. Due to co-colloid bacterial trans- port under non-isothermal conditions, in a coupled fracture-skin-matrix system, the fracture apertures vary spatially, with a corresponding pressure variation for a constant discharge. A series of numerical experiments were conducted for analyzing the spatial variation of fracture aperture in response to the combined effects of thermal stress, silica precipitation/dissolution, and simultaneous colloidal and bacte- rial transport in the presence of the fracture-skin. The simulation results suggest that temperature and contaminant concentration of the mobile fluid within the fracture increases with reduction in initial frac- ture aperture. The pattern of variation followed by the fracture aperture is nearly the same in the presence and absence of bacterial transport but the magnitude of the fracture aperture is low under the influence of bacterial transport. The variation in the fracture aperture resulting from precipitation-dissolution and thermoelastic stress is significant when the fracture aperture is very low and reduces with increment in fracture aperture. The variation in fracture aperture and pressure remains the same for both undersaturated and supersaturated fluid entering the fracture due to the influence of bacterial transport at the inlet of the fracture.
文摘Hydrothermal ore zoning is a transport-reaction problem in which infiltration is the principal Prcness of transport and dissolution/Precipitation is the Principal process of chemical reactions.Neglecting diffusion and ion exchange/adsorption would not affect the basic attributes of hydrothermal ore zoning. Hydrothermal ore zoning belongs essentially to infiltration metasomatic zoning, it results from the formation and propagation of dissolution/precipitation waves through Permeable media. The authors apply the theory of coupled infiltration and dissolution/precipitation reactions in Physicochemical hydrodynamics to studying the structural characteristics of dissolution/precipitation waves, and apply furthermore the coherence principle in dynamic theory of multicomponent coupled systems to revealing the dynamic mechanisms of their formation. The results of investigation verify and develop . C. 's theory of infiltration metasomatic zoning,on the one hand, raising it from the qualitative, equilibrium thermodynamic basis to the quantitative dynamic level;on the other hand, and more importantly, applying theories of Physicochemical hydrodynamics and dynamics of multicomponent coupled systems to bringing to light the dynamic mechanisms of formation of the structure of hydrothermal ore zoning, and advancing a theory of hydrothermal ore zoning, putting forward new ideas on the nature of the problem of hydrothermal ore zoning, the essence of hydrothermal ore zoning and the structural characteristics and mechanisms of formation of hydrothermal ore zoning.
基金Lule University of Technology for the financial support the financial support from the Swedish Research Council+2 种基金the National Basic Research Program of China (2009CB226103,2009CB623400)the National Natural Science Foundation of China(50808039)the Natural Science Foundation of Jiangsu Province,China (BK2009138)
文摘To investigate long-term CO2 behavior in geological formations and quantification of possible CO2 leaks, it is crucial to inves- tigate the potential mobility of CO2 dissolved in brines over a wide range of spatial and temporal scales and density distribu- tions in geological media. In this work, the mass transfer of aqueous CO2 in brines has been investigated by means of a chemi- cal potential gradient model based on non-equilibrium thermodynamics in which the statistical associating fluid theory equa- tion of state was used to calculate the fugacity coefficient of CO2 in brine. The investigation shows that the interracial concen- tration of aqueous CO2 and the corresponding density both increase with increasing pressure and decreasing temperature; the effective diffusion coefficients decrease initially and then increase with increasing pressure; and the density of the CO2-disolved brines increases with decreasing CO2 pressure in the CO2 dissolution process. The aqueous CO2 concentration profiles obtained by the chemical potential gradient model are considerably different from those obtained by the concentration gradient model, which shows the importance of considering non-ideality, especially when the pressure is high.
文摘Dissolution of fluorite (CaF2) and/or fluorapatite (FAP) [Cas(PO4)3F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F) contamination. Here, one dimensional reactive-transport models are developed to test this mechanism using the published dissolution and precipitation rate kinetics for the mineral pair FAP and calcite. Simulation results correctly show positive correlation between the aqueous concentrations of F and CO2 and negative correlation between F- and Ca^2+. Results also show that precipitation of calcite, contrary to the present understanding, slows down the FAP dissolution by 10G orders of magnitude compared to the FAP dissolution by hydrolysis. For appreciable amount of fluoride contamination rock-water interaction time must be long and of order 106 years.