Dissipative Kerr solitons in resonant frequency combs offer a promising route for ultrafast mode-locking,precision spectroscopy and time-frequency standards.The dynamics for the dissipative soliton generation,however,...Dissipative Kerr solitons in resonant frequency combs offer a promising route for ultrafast mode-locking,precision spectroscopy and time-frequency standards.The dynamics for the dissipative soliton generation,however,are intrinsically intertwined with thermal nonlinearities,limiting the soliton generation parameter map and statistical success probabilities of the solitary state.Here,via use of an auxiliary laser heating approach to suppress thermal dragging dynamics in dissipative soliton comb formation,we demonstrate stable Kerr soliton singlet formation and soliton bursts.First,we access a new soliton existence range with an inverse-sloped Kerr soliton evolution—diminishing soliton energy with increasing pump detuning.Second,we achieve deterministic transitions from Turinglike comb patterns directly into the dissipative Kerr soliton singlet pulse bypassing the chaotic states.This is achieved by avoiding subcomb overlaps at lower pump power,with near-identical singlet soliton comb generation over twenty instances.Third,with the red-detuned pump entrance route enabled,we uncover unique spontaneous soliton bursts in the direct formation of low-noise optical frequency combs from continuum background noise.The burst dynamics are due to the rapid entry and mutual attraction of the pump laser into the cavity mode,aided by the auxiliary laser and matching well with our numerical simulations.Enabled by the auxiliary-assisted frequency comb dynamics,we demonstrate an application of automatic soliton comb recovery and long-term stabilization against strong external perturbations.Our findings hold potential to expand the parameter space for ultrafast nonlinear dynamics and precision optical frequency comb stabilization.展开更多
The quantum fluctuations of the charge and current in a non-dissipative mesoscopic circuit with coupled inductors and capacitors are studied for the squeezed vacuum state.The influence of the phase angle upon the quan...The quantum fluctuations of the charge and current in a non-dissipative mesoscopic circuit with coupled inductors and capacitors are studied for the squeezed vacuum state.The influence of the phase angle upon the quantum fluctuations is discussed in particular.Our results indicate that when the circuit parameters remain constant and the phasesθof the two circuits are equal,the squeezing of the charge or its conjugate variable increases.When the difference of the two phases equalsπ,the squeezing will deteriorate.Therefore,if we want to decrease the quantum noise,we should not only control the amplitude r,but also control the phaseθcarefully.展开更多
Self-referenced dissipative Kerr solitons (DKSs) based on optical microresonators offer prominent characteristics allowing for various applications from precision measurement to astronomical spectrometer calibration. ...Self-referenced dissipative Kerr solitons (DKSs) based on optical microresonators offer prominent characteristics allowing for various applications from precision measurement to astronomical spectrometer calibration. To date,direct octave-spanning DKS generation has been achieved only in ultrahigh-Q silicon nitride microresonators under optimized laser tuning speed or bi-directional tuning. Here we propose a simple method to easily access the octave-spanning DKS in an aluminum nitride (AlN) microresonator. In the design,two modes that belong to different families but with the same polarization are nearly degenerate and act as a pump and an auxiliary resonance,respectively. The presence of the auxiliary resonance can balance the thermal dragging effect,crucially simplifying the DKS generation with a single pump and leading to an enhanced soliton access window. We experimentally demonstrate the long-lived DKS operation with a record single-soliton step (10.4 GHz or83 pm) and an octave-spanning bandwidth (1100–2300 nm) through adiabatic pump tuning. Our scheme also allows for direct creation of the DKS state with high probability and without elaborate wavelength or power schemes being required to stabilize the soliton behavior.展开更多
The thermodynamic systems and dynamic model suitable for determining the nonlinear chemical fingerprints of samples were analyzed.The results indicated that the damp nonlinear chemical reactions in close systems away ...The thermodynamic systems and dynamic model suitable for determining the nonlinear chemical fingerprints of samples were analyzed.The results indicated that the damp nonlinear chemical reactions in close systems away from the equilibrium and open systems without the complementarity of the dissipation substances have important significance for the throng characterization and whole content analysis of chemical components in samples.Various factors influencing on nonlinear chemical fingerprint,such as reactant species and their concentrations,electrode types,temperature,stir rate,the sort,dosage and granularity of the sample,etc.were amply researched by a nonlinear chemistry reaction,namely,damp B-Z oscillation which used acetone and glucose as the main dissipative substances.In addition,the quantitative information on the whole of chemical components in samples and the traits and applications of the fingerprint were investigated.The method and its important conditions for determining nonlinear chemistry fingerprint used in distinguishing and evaluating complex samples were successfully put forward.展开更多
The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR...The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.展开更多
Under the conditions of constant temperature and pressure,different influences of samples with different chemical components on the mechanism of nonlinear chemical reaction will cause different changes of the potentia...Under the conditions of constant temperature and pressure,different influences of samples with different chemical components on the mechanism of nonlinear chemical reaction will cause different changes of the potential-time relationship curve of the nonlinear chemical reaction system.Using it as the character,and using the B-Z nonlinear chemical system to use acetone and substrates in samples as main dissipative substances qua an example,the principle of nonlinear chemical fingerprint has been researched and discussed in detail.At the same time,the general method for calculating the system similarity about nonlinear chemical fingerprint was also put forward,and similarities of nonlinear chemistry fingerprints of different batches of Guhan Yangshengjing and 18 sorts of other samples were calculated by Euclidean distance,correlation coefficient,included angle cosine and system similarity,at the same time,the various similarities were analyzed.The results showed that,both of correlation coefficient and included angle cosine are unable to be used as the criterion for quantitatively evaluating the similarity of nonlinear chemistry fingerprint;as non-parametric similarity,Euclidean distance can accurately reflect the feature differences in the fingerprints,but as parametric similarity,sometimes,Euclidean distance can not accurately reflect the relative extent of characteristic difference in the nonlinear chemical fingerprints;system similarity can most truthfully reflect the characteristic difference in the nonlinear chemical fingerprints,and is the best evaluating method among the four ones.Therefore,system similarity can be used to quantitatively calculate the similar extent between the nonlinear chemical fingerprints.An economical,simple and convenient,easy pushing and effective method for identifying and evaluating complicated samples has successfully been put forward.展开更多
The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian...The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian systems, which yields the problem of generalized Hamiltonian realization. This paper deals with the generalized Hamiltonian realization of autonomous nonlinear systems. First, this paper investigates the relation between traditional Hamiltonian realizations and first integrals, proposes a new method of generalized Hamiltonian realization called the orthogonal decomposition method, and gives the dissipative realization form of passive systems. This paper has proved that an arbitrary system has an orthogonal decomposition realization and an arbitrary asymptotically stable system has a strict dissipative realization. Then this paper studies the feedback dissipative realization problem and proposes a control-switching method for the realization. Finally, this paper proposes several sufficient conditions for feedback dissipative realization.展开更多
For injective, bounded operator C on a Banach space X , the author defines the C -dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C -semigro...For injective, bounded operator C on a Banach space X , the author defines the C -dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C -semigroups, where a C -semigroup T(·) is quasi-contractive if ‖T(t)x‖‖Cx‖ for all t0 and x∈X . This kind of generators guarantee that the associate abstract Cauchy problem u′(t,x)=Au(t,x) has a unique nonincreasing solution when the initial data is in C(D(A)) (here D(A) is the domain of A ). Also, the generators of quasi isometric C -semigroups are characterized.展开更多
The aggregates in sodium dedecylsulphate (SDS)/dimethylbenzene/water systems have been investigated using dissipative particles dynamic (DPD) simulation method. Through analyzing three dimensional structures of aggre...The aggregates in sodium dedecylsulphate (SDS)/dimethylbenzene/water systems have been investigated using dissipative particles dynamic (DPD) simulation method. Through analyzing three dimensional structures of aggregates, three simulated results are found. One is the phase separation, which is clearly observed by water density and the aggregates in the simulated cell; another is the water morphology in reverse micelle, which can be found through the isodensity slice of water including bound water, trapped water and bulky water; the third is about the water/oil interface, i.e., ionic surfactant molecules, SDS, prefer to exist in the interface between water and oil phase at the low concentration.展开更多
In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we i...In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.展开更多
Developing high resolution finite difference scheme and enabling the use of this scheme on complex geometry are the aims of this study.High resolution has been achieved by Dissipative Compact Schemes(DCS),however,acco...Developing high resolution finite difference scheme and enabling the use of this scheme on complex geometry are the aims of this study.High resolution has been achieved by Dissipative Compact Schemes(DCS),however,according to the recent research,applications of DCS on complex geometry may have serious problem for that the Geometric Conservation Law(GCL)is not satisfied,and this may cause numerical instability.To cope with this problem,a new scheme named Hybrid cell-edge and cell-node Dissipative Compact Scheme(HDCS)has been formulated.The formulation of the HDCS contains two steps.First,a new central compact scheme is formulated for the purpose of conveniently fulfilling the GCL,and then dissipation is added on the central scheme by high-order dissipative interpolation of cell-edge variables.The solutions of Euler and Navier-Stokes equations show that the HDCS can be applied successfully on complex geometry,while the DCS may suffer numerical instabilities.Moreover,high resolution of the HDCS may be observed in the test of scattering of acoustic waves by multiple cylinders.展开更多
[1] has proved that the dissipative Zakharov system has an ε2-weak compact attractor. In this paper, we further show that the dissipative Langmuir waves in plasmas admit an inertial fractal set of (ε2,ε1)-type. We ...[1] has proved that the dissipative Zakharov system has an ε2-weak compact attractor. In this paper, we further show that the dissipative Langmuir waves in plasmas admit an inertial fractal set of (ε2,ε1)-type. We also make the estimates on its fractal dimension and exponential attraction.展开更多
A new method of light-powered dissipative supra-molecular polymerization is established,in which supramolecular polymerization is implemented in the far-from-equilibrium state.A bifunctional mono-mer containing two vi...A new method of light-powered dissipative supra-molecular polymerization is established,in which supramolecular polymerization is implemented in the far-from-equilibrium state.A bifunctional mono-mer containing two viologen moieties was designed.Upon inputting energy by light,the sys-tem was driven far from equilibrium,and the mono-mers were photoreduced and activated to form supramolecular polymers driven by 2∶1 host–guest complexation of the viologen cation radical and cucurbit[8]uril.As the system returned to equilibri-um,the supramolecular polymers depolymerized spontaneously by air oxidation.This method works in both linear and in cross-linked supramolecular polymerization.The strategy of light-powered dis-sipative supramolecular polymerization is anticipat-ed to have potential in the fabrication of functional supramolecular materials,especially in creating novel“living”materials.展开更多
Soliton explosions,among the most exotic dynamics,have been extensively studied on parameter invariant stationary solitons.However,the explosion dynamics are still largcly unexplored in breathing dissipative solitons ...Soliton explosions,among the most exotic dynamics,have been extensively studied on parameter invariant stationary solitons.However,the explosion dynamics are still largcly unexplored in breathing dissipative solitons as a dynamic solution to many nonlincar systems.Here,we report on the first observation of a breathing dissipative soliton explosion in a nct-normal-dispersion bidirectional ultrafast fiber lascr.The breathing soliton explos ionscould be stimulated by the soliton buildup process or alteration of polarization settings.Transient breathing soliton pairs with intensive repulsion that is sensitive to initial conditions can also be triggered by multiple soliton explosions in the soliton buildup process instead of being triggered by varying polarization settings.The high bchavior similarity also exists in the breathing soliton buildup and explosion process owing to the common gain and loss modulation.In addition,dissipative rogue waves were detected in the breathing soliton explosion,and the collision of breathing soliton significantly enhanced the amplitude of rogue waves,which is characteristic of the breathing solitons in a bidirectional fiber laser.These results shed new insights into complex dissipative soliton dynamics.展开更多
基金supported by the National Key R&D Program of China(2018YFA0307400)NFSC grant 61705033+3 种基金the 111 project(B14039)Lawrence Livermore National Laboratory contract B622827the Office of Naval Research award N00014-16-1-2094the National Science Foundation awards 1741707,1810506 and 1824568.
文摘Dissipative Kerr solitons in resonant frequency combs offer a promising route for ultrafast mode-locking,precision spectroscopy and time-frequency standards.The dynamics for the dissipative soliton generation,however,are intrinsically intertwined with thermal nonlinearities,limiting the soliton generation parameter map and statistical success probabilities of the solitary state.Here,via use of an auxiliary laser heating approach to suppress thermal dragging dynamics in dissipative soliton comb formation,we demonstrate stable Kerr soliton singlet formation and soliton bursts.First,we access a new soliton existence range with an inverse-sloped Kerr soliton evolution—diminishing soliton energy with increasing pump detuning.Second,we achieve deterministic transitions from Turinglike comb patterns directly into the dissipative Kerr soliton singlet pulse bypassing the chaotic states.This is achieved by avoiding subcomb overlaps at lower pump power,with near-identical singlet soliton comb generation over twenty instances.Third,with the red-detuned pump entrance route enabled,we uncover unique spontaneous soliton bursts in the direct formation of low-noise optical frequency combs from continuum background noise.The burst dynamics are due to the rapid entry and mutual attraction of the pump laser into the cavity mode,aided by the auxiliary laser and matching well with our numerical simulations.Enabled by the auxiliary-assisted frequency comb dynamics,we demonstrate an application of automatic soliton comb recovery and long-term stabilization against strong external perturbations.Our findings hold potential to expand the parameter space for ultrafast nonlinear dynamics and precision optical frequency comb stabilization.
文摘The quantum fluctuations of the charge and current in a non-dissipative mesoscopic circuit with coupled inductors and capacitors are studied for the squeezed vacuum state.The influence of the phase angle upon the quantum fluctuations is discussed in particular.Our results indicate that when the circuit parameters remain constant and the phasesθof the two circuits are equal,the squeezing of the charge or its conjugate variable increases.When the difference of the two phases equalsπ,the squeezing will deteriorate.Therefore,if we want to decrease the quantum noise,we should not only control the amplitude r,but also control the phaseθcarefully.
基金Science Foundation Ireland (17/NSFC/4918)National Natural Science Foundation of China(61861136001)。
文摘Self-referenced dissipative Kerr solitons (DKSs) based on optical microresonators offer prominent characteristics allowing for various applications from precision measurement to astronomical spectrometer calibration. To date,direct octave-spanning DKS generation has been achieved only in ultrahigh-Q silicon nitride microresonators under optimized laser tuning speed or bi-directional tuning. Here we propose a simple method to easily access the octave-spanning DKS in an aluminum nitride (AlN) microresonator. In the design,two modes that belong to different families but with the same polarization are nearly degenerate and act as a pump and an auxiliary resonance,respectively. The presence of the auxiliary resonance can balance the thermal dragging effect,crucially simplifying the DKS generation with a single pump and leading to an enhanced soliton access window. We experimentally demonstrate the long-lived DKS operation with a record single-soliton step (10.4 GHz or83 pm) and an octave-spanning bandwidth (1100–2300 nm) through adiabatic pump tuning. Our scheme also allows for direct creation of the DKS state with high probability and without elaborate wavelength or power schemes being required to stabilize the soliton behavior.
基金supported by the National Key Technologies R & DProgram (2009GJD20033)the International Scientific and Technological Cooperation Project (2007DFA40680) from the Ministry of Scienceand Technology of China
文摘The thermodynamic systems and dynamic model suitable for determining the nonlinear chemical fingerprints of samples were analyzed.The results indicated that the damp nonlinear chemical reactions in close systems away from the equilibrium and open systems without the complementarity of the dissipation substances have important significance for the throng characterization and whole content analysis of chemical components in samples.Various factors influencing on nonlinear chemical fingerprint,such as reactant species and their concentrations,electrode types,temperature,stir rate,the sort,dosage and granularity of the sample,etc.were amply researched by a nonlinear chemistry reaction,namely,damp B-Z oscillation which used acetone and glucose as the main dissipative substances.In addition,the quantitative information on the whole of chemical components in samples and the traits and applications of the fingerprint were investigated.The method and its important conditions for determining nonlinear chemistry fingerprint used in distinguishing and evaluating complex samples were successfully put forward.
基金the National Natural Science Foundation of China (Grant Nos. 69774011 and 60433050).
文摘The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.
基金supported by the National Key Technologies R & D Program (2009GJD20033)the International Scientific and Technological Cooperation Project from Chinese Ministry of Science and Technology (2007DFA40680)
文摘Under the conditions of constant temperature and pressure,different influences of samples with different chemical components on the mechanism of nonlinear chemical reaction will cause different changes of the potential-time relationship curve of the nonlinear chemical reaction system.Using it as the character,and using the B-Z nonlinear chemical system to use acetone and substrates in samples as main dissipative substances qua an example,the principle of nonlinear chemical fingerprint has been researched and discussed in detail.At the same time,the general method for calculating the system similarity about nonlinear chemical fingerprint was also put forward,and similarities of nonlinear chemistry fingerprints of different batches of Guhan Yangshengjing and 18 sorts of other samples were calculated by Euclidean distance,correlation coefficient,included angle cosine and system similarity,at the same time,the various similarities were analyzed.The results showed that,both of correlation coefficient and included angle cosine are unable to be used as the criterion for quantitatively evaluating the similarity of nonlinear chemistry fingerprint;as non-parametric similarity,Euclidean distance can accurately reflect the feature differences in the fingerprints,but as parametric similarity,sometimes,Euclidean distance can not accurately reflect the relative extent of characteristic difference in the nonlinear chemical fingerprints;system similarity can most truthfully reflect the characteristic difference in the nonlinear chemical fingerprints,and is the best evaluating method among the four ones.Therefore,system similarity can be used to quantitatively calculate the similar extent between the nonlinear chemical fingerprints.An economical,simple and convenient,easy pushing and effective method for identifying and evaluating complicated samples has successfully been put forward.
基金This work was supported by Project 973 of China(Grant Nos.G1998020307,G1998020308)China Postdoctoral Science Foundation.
文摘The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian systems, which yields the problem of generalized Hamiltonian realization. This paper deals with the generalized Hamiltonian realization of autonomous nonlinear systems. First, this paper investigates the relation between traditional Hamiltonian realizations and first integrals, proposes a new method of generalized Hamiltonian realization called the orthogonal decomposition method, and gives the dissipative realization form of passive systems. This paper has proved that an arbitrary system has an orthogonal decomposition realization and an arbitrary asymptotically stable system has a strict dissipative realization. Then this paper studies the feedback dissipative realization problem and proposes a control-switching method for the realization. Finally, this paper proposes several sufficient conditions for feedback dissipative realization.
文摘For injective, bounded operator C on a Banach space X , the author defines the C -dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C -semigroups, where a C -semigroup T(·) is quasi-contractive if ‖T(t)x‖‖Cx‖ for all t0 and x∈X . This kind of generators guarantee that the associate abstract Cauchy problem u′(t,x)=Au(t,x) has a unique nonincreasing solution when the initial data is in C(D(A)) (here D(A) is the domain of A ). Also, the generators of quasi isometric C -semigroups are characterized.
基金ProjectsupportedbytheNaturalScienceFoundationofShandongProvince (No .Y2 0 0 1B0 8)
文摘The aggregates in sodium dedecylsulphate (SDS)/dimethylbenzene/water systems have been investigated using dissipative particles dynamic (DPD) simulation method. Through analyzing three dimensional structures of aggregates, three simulated results are found. One is the phase separation, which is clearly observed by water density and the aggregates in the simulated cell; another is the water morphology in reverse micelle, which can be found through the isodensity slice of water including bound water, trapped water and bulky water; the third is about the water/oil interface, i.e., ionic surfactant molecules, SDS, prefer to exist in the interface between water and oil phase at the low concentration.
基金supported by National Science Foundation of China(11071162)Shanghai Municipal Natural Science Foundation (09ZR1413500)
文摘In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.
基金supported by the National Basic Research Program of China(Grant no.2009CB723800)National Natural Science Foundation of China(Grand Nos.11072259 and 11202226)the Foundation of State Key Laboratory of Aerodynamics(Grand Nos.JBKY11030902 and JBKY11010100)
文摘Developing high resolution finite difference scheme and enabling the use of this scheme on complex geometry are the aims of this study.High resolution has been achieved by Dissipative Compact Schemes(DCS),however,according to the recent research,applications of DCS on complex geometry may have serious problem for that the Geometric Conservation Law(GCL)is not satisfied,and this may cause numerical instability.To cope with this problem,a new scheme named Hybrid cell-edge and cell-node Dissipative Compact Scheme(HDCS)has been formulated.The formulation of the HDCS contains two steps.First,a new central compact scheme is formulated for the purpose of conveniently fulfilling the GCL,and then dissipation is added on the central scheme by high-order dissipative interpolation of cell-edge variables.The solutions of Euler and Navier-Stokes equations show that the HDCS can be applied successfully on complex geometry,while the DCS may suffer numerical instabilities.Moreover,high resolution of the HDCS may be observed in the test of scattering of acoustic waves by multiple cylinders.
文摘[1] has proved that the dissipative Zakharov system has an ε2-weak compact attractor. In this paper, we further show that the dissipative Langmuir waves in plasmas admit an inertial fractal set of (ε2,ε1)-type. We also make the estimates on its fractal dimension and exponential attraction.
基金This work is supported financially by the National Natural Science Foundation of China(21434004,21890731,21821001,and 91527000)P.Z.is supported by the Na-tional Natural Science Foundation of China(21771103)the Natural Science Foundation of Jiangsu Province(BK20160639)。
文摘A new method of light-powered dissipative supra-molecular polymerization is established,in which supramolecular polymerization is implemented in the far-from-equilibrium state.A bifunctional mono-mer containing two viologen moieties was designed.Upon inputting energy by light,the sys-tem was driven far from equilibrium,and the mono-mers were photoreduced and activated to form supramolecular polymers driven by 2∶1 host–guest complexation of the viologen cation radical and cucurbit[8]uril.As the system returned to equilibri-um,the supramolecular polymers depolymerized spontaneously by air oxidation.This method works in both linear and in cross-linked supramolecular polymerization.The strategy of light-powered dis-sipative supramolecular polymerization is anticipat-ed to have potential in the fabrication of functional supramolecular materials,especially in creating novel“living”materials.
基金National Natural Science Foundation of China(N_HKU712/16):Rcsearch Grants Council,University Grants Committee of the Hong Kong Special Administrative Region,China(CityU T42-103/16-N,E-HKU701/17,HKU17200219,HKU17209018,HKU C7047-16G).
文摘Soliton explosions,among the most exotic dynamics,have been extensively studied on parameter invariant stationary solitons.However,the explosion dynamics are still largcly unexplored in breathing dissipative solitons as a dynamic solution to many nonlincar systems.Here,we report on the first observation of a breathing dissipative soliton explosion in a nct-normal-dispersion bidirectional ultrafast fiber lascr.The breathing soliton explos ionscould be stimulated by the soliton buildup process or alteration of polarization settings.Transient breathing soliton pairs with intensive repulsion that is sensitive to initial conditions can also be triggered by multiple soliton explosions in the soliton buildup process instead of being triggered by varying polarization settings.The high bchavior similarity also exists in the breathing soliton buildup and explosion process owing to the common gain and loss modulation.In addition,dissipative rogue waves were detected in the breathing soliton explosion,and the collision of breathing soliton significantly enhanced the amplitude of rogue waves,which is characteristic of the breathing solitons in a bidirectional fiber laser.These results shed new insights into complex dissipative soliton dynamics.