为开发新的室内空气净化、消毒和灭菌设备,在简要介绍空气净化消毒器基本结构和原理的基础上,研究了空气净化消毒器的空气净化性能、自然菌消亡率、高效滤床远红外辐射温升特性和远红外热力消毒特性.试验结果表明,空气净化消毒器在容积...为开发新的室内空气净化、消毒和灭菌设备,在简要介绍空气净化消毒器基本结构和原理的基础上,研究了空气净化消毒器的空气净化性能、自然菌消亡率、高效滤床远红外辐射温升特性和远红外热力消毒特性.试验结果表明,空气净化消毒器在容积为54 m3的房间内运行90 m in后,室内空气洁净度可达M6.5级(十万级)以上,对室内空气中自然菌的消亡率达97%以上,净化后平均菌落数<200 cfu/m2,远红外热力消毒对自然菌的杀灭对数值都>1,上述指标不仅满足居室环境使用要求,而且满足II类病房使用要求.展开更多
Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas.Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 1o L.This st...Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas.Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 1o L.This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters.Tests were performed using graphite electrodes with areas of 68.4 cm^(2) at the laboratory scale and 1865.0 cm^(2) at the prototype scale.A design for experiments with different operating times,chloride concentrations,and electric current intensities was developed.The optimal operating time,sodium chloride concentration,and current intensity at the laboratory scale were 120 min,150 g of chloride per liter,and 3 A,respectively,leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl_(2) per kilojoule.At the prototype scale,the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min,a sodium chloride concentration of 100 g of chloride per liter,and a current intensity of 70 A,reaching an energy efficiency of 42.56 mg of Cl_(2) per kilojoule.In addition,this study evaluated the influences of the chloride concentration,current intensity,and operating time on the production of sodium hypochlorite at the two scales,and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems.The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.展开更多
Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process.Currently,there is little data available on the effects of disinfection an...Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process.Currently,there is little data available on the effects of disinfection and decontamination on positive pressure respiratory protective hoods(PPRPH).In this study,we evaluated the effect of vaporized hydrogen peroxide(VHP)on the disinfection of PPRPH to determine applicability of this method for disinfection of protective equipment,especially protective equipment with an electric supply system.A hydrogen peroxide-based fumigation sterilization cabinet was developed particularly for disinfection of protective equipment,and the disinfection experiments were conducted using four PPRPHs hung in the fumigation chamber.The pathogenic microorganism Geobacillus stearothermophilus ATCC 7953 was used as a biological indicator in this study and the relationship between air flow(the amount of VHP)and disinfection was investigated.Both function and the material physical properties of the PPRPH were assessed following the disinfection procedure.No surviving Geobacillus stearothermophilus ATCC 7953,both inside and outside of these disinfected PPRPHs,could be observed after a 60 min treatment with an air flow of 10.5–12.3 m^(3)/h.Both function and material physical properties of these PPRPHs met the working requirements after disinfection.This study indicates that air flow in the fumigation chamber directly influences the concentration of VHP.The protective equipment fumigation sterilization cabinet developed in this paper achieves the complete sterilization of the PPRPHs when the air flow is at 10.5–12.3 m^(3)/h,and provides a potential solution for the disinfection of various kind of protective equipment.展开更多
文摘为开发新的室内空气净化、消毒和灭菌设备,在简要介绍空气净化消毒器基本结构和原理的基础上,研究了空气净化消毒器的空气净化性能、自然菌消亡率、高效滤床远红外辐射温升特性和远红外热力消毒特性.试验结果表明,空气净化消毒器在容积为54 m3的房间内运行90 m in后,室内空气洁净度可达M6.5级(十万级)以上,对室内空气中自然菌的消亡率达97%以上,净化后平均菌落数<200 cfu/m2,远红外热力消毒对自然菌的杀灭对数值都>1,上述指标不仅满足居室环境使用要求,而且满足II类病房使用要求.
基金supported by the America University,the Swiss Agency for Development and Cooperation,and the Central Technical Institute.
文摘Sodium hypochlorite has significant potential as a sanitation solution in hard-to-reach areas.Few studies have investigated the optimal electrolysis parameters for its production with volumes greater than 1o L.This study evaluated sodium hypochlorite production through electrolysis in a 22-L prototype and identified the optimal operating parameters.Tests were performed using graphite electrodes with areas of 68.4 cm^(2) at the laboratory scale and 1865.0 cm^(2) at the prototype scale.A design for experiments with different operating times,chloride concentrations,and electric current intensities was developed.The optimal operating time,sodium chloride concentration,and current intensity at the laboratory scale were 120 min,150 g of chloride per liter,and 3 A,respectively,leading to the production of 5.02 g/L of the disinfectant with an energy efficiency of 12.21 mg of Cl_(2) per kilojoule.At the prototype scale,the maximum sodium hypochlorite concentration of 3.99 g of chloride per liter was achieved with an operating time of 120 min,a sodium chloride concentration of 100 g of chloride per liter,and a current intensity of 70 A,reaching an energy efficiency of 42.56 mg of Cl_(2) per kilojoule.In addition,this study evaluated the influences of the chloride concentration,current intensity,and operating time on the production of sodium hypochlorite at the two scales,and formulated the equations showing the trends of sodium hypochlorite production and energy efficiency in the electrochemical systems.The 22-L prototype model for production of this oxidizing substance is promising for disinfection of large volumes of water in areas that are difficult to access.
基金funding projects of Chinese Ministry of Science and Technology:National Key research and development plan of China(2016YFC1201404)the Megaproject for Infectious Disease Research of China(2017ZX10304403-004-001).
文摘Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process.Currently,there is little data available on the effects of disinfection and decontamination on positive pressure respiratory protective hoods(PPRPH).In this study,we evaluated the effect of vaporized hydrogen peroxide(VHP)on the disinfection of PPRPH to determine applicability of this method for disinfection of protective equipment,especially protective equipment with an electric supply system.A hydrogen peroxide-based fumigation sterilization cabinet was developed particularly for disinfection of protective equipment,and the disinfection experiments were conducted using four PPRPHs hung in the fumigation chamber.The pathogenic microorganism Geobacillus stearothermophilus ATCC 7953 was used as a biological indicator in this study and the relationship between air flow(the amount of VHP)and disinfection was investigated.Both function and the material physical properties of the PPRPH were assessed following the disinfection procedure.No surviving Geobacillus stearothermophilus ATCC 7953,both inside and outside of these disinfected PPRPHs,could be observed after a 60 min treatment with an air flow of 10.5–12.3 m^(3)/h.Both function and material physical properties of these PPRPHs met the working requirements after disinfection.This study indicates that air flow in the fumigation chamber directly influences the concentration of VHP.The protective equipment fumigation sterilization cabinet developed in this paper achieves the complete sterilization of the PPRPHs when the air flow is at 10.5–12.3 m^(3)/h,and provides a potential solution for the disinfection of various kind of protective equipment.