In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions ...In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference-differential equations.展开更多
It is shown that the Kronecker product can be applied to construct integrable couplings for discrete systems. In this paper, using this method, we derive two integrable couplings for a lattice hierarchy.
A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable sym...A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonli-nearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting lattice soliton equations.展开更多
In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained...In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).展开更多
文摘In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference-differential equations.
文摘It is shown that the Kronecker product can be applied to construct integrable couplings for discrete systems. In this paper, using this method, we derive two integrable couplings for a lattice hierarchy.
文摘A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonli-nearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting lattice soliton equations.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No. 2008670
文摘In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).