The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely s...The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.展开更多
【目的】推求双曲线型薄壁堰堰流的基本方程式,确定双曲线型薄壁堰的流量系数,为实际工程中流量的控制和测量提供参考。【方法】根据双曲线构建了双曲线型薄壁堰,通过能量方程式推导其流量的计算公式;数值模拟了4种不同堰顶水头的过流能...【目的】推求双曲线型薄壁堰堰流的基本方程式,确定双曲线型薄壁堰的流量系数,为实际工程中流量的控制和测量提供参考。【方法】根据双曲线构建了双曲线型薄壁堰,通过能量方程式推导其流量的计算公式;数值模拟了4种不同堰顶水头的过流能力,根据模拟的流量数据利用最小二乘法拟合流量与堰顶水头的关系式,与理论推求的堰流基本公式相结合确定双曲线型薄壁堰的流量系数,辅以RNGk-ε湍流模型数值求解气液两相流时均方程;使用半隐式SIMPLE(Semi-implicit method for pressure-linked equations)算法求解速度与压力耦合方程组,并用VOF(Volume of fluid)法模拟自由水面。【结果】理论公式计算的流量与数值模拟的流量相差甚微,相对误差在0.3%以内,证明本研究推求公式正确。【结论】双曲线型薄壁堰的流量与堰顶水头成正比关系,该关系为流量的控制和测量提供了便利。展开更多
In this study, hydraulic model tests are carried out to investigate the mean overtopping discharge at perforated caisson breakwaters for non-impulsive waves. Based on the experimental data, the mean overtopping discha...In this study, hydraulic model tests are carried out to investigate the mean overtopping discharge at perforated caisson breakwaters for non-impulsive waves. Based on the experimental data, the mean overtopping discharges of perforated and nonperforated caissons are compared. It is found that when the relative crest freeboard is smaller than 1.6, the mean overtopping discharge of a breakwater can be reduced by at least half by using perforated caissons with 35% porosity instead of nonperforated caissons. The effects of the relative crest freeboard, the caisson porosity and perforation shape, the relative wave chamber width and the relative water depth on the mean overtopping discharge at perforated caissons are clarified. Then,predictive formulas for the mean overtopping discharge at perforated caissons are developed. The predictive formulas based on the experimental data are valid in a wide range of the relative crest freeboard and involve the effects of the caisson porosity and the relative water depth. The predictive formulas developed in this study are of significance for the hydraulic design of perforated caissons.展开更多
基金financially supported by the National Natural Science Foundation of China(Gramt No.51309122)。
文摘The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.
文摘【目的】推求双曲线型薄壁堰堰流的基本方程式,确定双曲线型薄壁堰的流量系数,为实际工程中流量的控制和测量提供参考。【方法】根据双曲线构建了双曲线型薄壁堰,通过能量方程式推导其流量的计算公式;数值模拟了4种不同堰顶水头的过流能力,根据模拟的流量数据利用最小二乘法拟合流量与堰顶水头的关系式,与理论推求的堰流基本公式相结合确定双曲线型薄壁堰的流量系数,辅以RNGk-ε湍流模型数值求解气液两相流时均方程;使用半隐式SIMPLE(Semi-implicit method for pressure-linked equations)算法求解速度与压力耦合方程组,并用VOF(Volume of fluid)法模拟自由水面。【结果】理论公式计算的流量与数值模拟的流量相差甚微,相对误差在0.3%以内,证明本研究推求公式正确。【结论】双曲线型薄壁堰的流量与堰顶水头成正比关系,该关系为流量的控制和测量提供了便利。
基金supported by the Natural Science Foundation of China(Grant Nos.51322903&51725903)
文摘In this study, hydraulic model tests are carried out to investigate the mean overtopping discharge at perforated caisson breakwaters for non-impulsive waves. Based on the experimental data, the mean overtopping discharges of perforated and nonperforated caissons are compared. It is found that when the relative crest freeboard is smaller than 1.6, the mean overtopping discharge of a breakwater can be reduced by at least half by using perforated caissons with 35% porosity instead of nonperforated caissons. The effects of the relative crest freeboard, the caisson porosity and perforation shape, the relative wave chamber width and the relative water depth on the mean overtopping discharge at perforated caissons are clarified. Then,predictive formulas for the mean overtopping discharge at perforated caissons are developed. The predictive formulas based on the experimental data are valid in a wide range of the relative crest freeboard and involve the effects of the caisson porosity and the relative water depth. The predictive formulas developed in this study are of significance for the hydraulic design of perforated caissons.
文摘为了研究雨水口泄流对城市洪涝的影响,建立包含雨水口泄流计算模块的平面二维水动力学模型.采用典型街区结构的水槽试验数据对模型进行率定和验证,超过85%的测点纳什效率系数大于0.77.将模型应用到英国Glasgow的城市街区,采用综合流速公式和孔流堰流公式计算的排水总量最大差值占总水量的26.5%,前者考虑侧支管对雨水口泄流能力的限制作用,更符合实际情况.与不考虑雨水口泄流相比,采用综合流速公式计算雨水口泄流后,最大淹没范围减少29.4%,主干道上最大积水水深减小0.395 m,最大积水水深处的洪水波到达时间延后100 s.