In this paper, both characteristics and feasibility of linear phased array in acoustic well-logging are investigated by using FEM simulation. Numerical results show that if appropriate delay times of sources are exert...In this paper, both characteristics and feasibility of linear phased array in acoustic well-logging are investigated by using FEM simulation. Numerical results show that if appropriate delay times of sources are exerted on elements of phased array, direction of acoustic beam radiated from the phased array can be steered so that the refracted compressional wave and the refracted shear wave can be excited effectively. Moreover, if lower frequency or weighted phased linear array is employed, main lobe of the phased array can be widened so that the refracted compressional wave can be estimulated sufficiently both in hard formation and in soft formation. Therefore, linear phased array can be used to improve quality of well-logging data and enhance both signal-to-noise ratio and exploring capacity of acoustic well-logging radically.展开更多
Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground ...Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.展开更多
An M6.5 earthquake occurred on August 3rd, 2014 in Ludian of Yunnan Province in China, causing severe casualty and economic loss. Local broadband waveform inversion with the CAP method demonstrates that the earthquake...An M6.5 earthquake occurred on August 3rd, 2014 in Ludian of Yunnan Province in China, causing severe casualty and economic loss. Local broadband waveform inversion with the CAP method demonstrates that the earthquake is a strike-slip event, with the strike along 70° and 160° for the two nodal planes respectively. However, the geological structure in the epicentral region is complicated with abundant active faults, and it is challenging to identify the seismogenic fault with the focal plane solutions due to nodal-plane ambiguity. We resolved the rupture directivity by measuring the difference between centroid location and hypocenter of the Ludian earthquake with the time shift from CAP inversion, and found that the nodal plane with the strike of 160° is the ruptured fault plane. Moreover, the rupture is found to propagate from northwest to southeast.展开更多
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed ve...In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility.展开更多
文摘In this paper, both characteristics and feasibility of linear phased array in acoustic well-logging are investigated by using FEM simulation. Numerical results show that if appropriate delay times of sources are exerted on elements of phased array, direction of acoustic beam radiated from the phased array can be steered so that the refracted compressional wave and the refracted shear wave can be excited effectively. Moreover, if lower frequency or weighted phased linear array is employed, main lobe of the phased array can be widened so that the refracted compressional wave can be estimulated sufficiently both in hard formation and in soft formation. Therefore, linear phased array can be used to improve quality of well-logging data and enhance both signal-to-noise ratio and exploring capacity of acoustic well-logging radically.
基金National Natural Science Foundation of China (59895410) Commonweal Foundation of the Ministry of Science and Technology of China (2001DIB20098).
文摘Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates. There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.
基金supported by the National Natural Science Foundation of China(Grant No.41274069)National Basic Research Program of China(Grant No.2014CB845901)
文摘An M6.5 earthquake occurred on August 3rd, 2014 in Ludian of Yunnan Province in China, causing severe casualty and economic loss. Local broadband waveform inversion with the CAP method demonstrates that the earthquake is a strike-slip event, with the strike along 70° and 160° for the two nodal planes respectively. However, the geological structure in the epicentral region is complicated with abundant active faults, and it is challenging to identify the seismogenic fault with the focal plane solutions due to nodal-plane ambiguity. We resolved the rupture directivity by measuring the difference between centroid location and hypocenter of the Ludian earthquake with the time shift from CAP inversion, and found that the nodal plane with the strike of 160° is the ruptured fault plane. Moreover, the rupture is found to propagate from northwest to southeast.
文摘In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility.