基于2003—2021年省际面板数据,根据耦合协调度模型测算我国省域双向FDI(foreign direct investment)互动发展水平,运用双向固定效应模型考察双向FDI互动对区域创业活跃度的影响。研究发现,双向FDI互动显著提升了区域创业活跃度,在影响...基于2003—2021年省际面板数据,根据耦合协调度模型测算我国省域双向FDI(foreign direct investment)互动发展水平,运用双向固定效应模型考察双向FDI互动对区域创业活跃度的影响。研究发现,双向FDI互动显著提升了区域创业活跃度,在影响过程中,经济增长和产业结构发挥正向调节作用,政府干预发挥逆向调节作用。异质性检验结果表明,在市场规模越大、创新能力越强和城市化水平越高的区域中,双向FDI互动越能促进区域创业活跃度提升。展开更多
The rapid synthesis of structurally complicated electron donors&acceptors still remains a major challenge in organic solar cells(OSC).In this work,we developed a highly efficient strategy to access long-chain olig...The rapid synthesis of structurally complicated electron donors&acceptors still remains a major challenge in organic solar cells(OSC).In this work,we developed a highly efficient strategy to access long-chain oligomeric donor and acceptors for OSC applications.A series of cyclopentadithiophene(CPDT)and benzothiadiazole(BT)-basedπ-conjugated oligomers,i.e.,three oligomeric acceptors(BTDT)n-IC(n=1—3)and one long-chain oligomeric donor(BTDT)4-RD,are facilely synthesized by an atom-and step-economical,and labor-saving direct C—H arylation(DACH)reaction(i.e.,C—H/C—Br cross coupling).Note that(BTDT)4-RD involving five CPDT,four BT and two rhodamine(RD)building blocks is the longest oligomeric donor in the fullerene-free OSC devices ever reported.The dependence of the structure-property-performance correlation of(BTDT)n-IC(n=1—3)and(BTDT)4-RD on theπ-conjugation lengths is thoroughly investigated by opto-electrochemical measurements,bulk heterojunction(BHJ)OSC devices and microscopies.The(BTDT)1-IC:PBDB-T and(BTDT)4-RD:Y6 BHJs achieve power conversion efficiencies of 9.14%and 4.51%,respectively.Our findings demonstrate that DACH reaction is a powerful tool to tune the opto-electronic properties and device performances by regulating the lengths ofπ-conjugated oligomers with varied numbers of repeating units.展开更多
Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processi...Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.展开更多
Axially chiral N-arylindoles bearing a stereogenic C—N axis are unique important scaffolds in natural products,advance materials,pharmaceuticals and privileged chiral ligands or catalysts.Herein,we report the direct ...Axially chiral N-arylindoles bearing a stereogenic C—N axis are unique important scaffolds in natural products,advance materials,pharmaceuticals and privileged chiral ligands or catalysts.Herein,we report the direct synthesis of C—N axially chiral N-arylindoles through a Pd-catalyzed free amine-directed atroposelective C—H olefination enabled by a spiro phosphoric acid(SPA)ligand.A wide range of enantioenriched N-aromatic amine indoles were obtained in high yields with good enantioselectivities(35 examples,up to 91%yield and up to 96%ee).The chiral products with free amine group offer an effective functional handle for down-stream diversity-oriented synthesis.展开更多
The activated carbon fiber(ACF) was prepared from polyacrylonitrile-based pre-oxidized fiber(PANOF) by KOH direct activation. The influence of activation conditions including impregnation ratio(the mass ratio of ...The activated carbon fiber(ACF) was prepared from polyacrylonitrile-based pre-oxidized fiber(PANOF) by KOH direct activation. The influence of activation conditions including impregnation ratio(the mass ratio of PANOF to KOH), activation temperature and activation time on the pore structure and electrochemical properties of ACF was investigated, and the corresponding activation mechanism was proposed. The ACF prepared at an activation temperature of 800℃ and an impregnation ratio(the mass ratio of PANOF to KOH) of 1:2 for an activation time of 1 b in 6 mol/L KOH solution exhibits a specific surface area of 3029 m^2/g, a mesoporosity of 84.2% and a specific capacitance of 288 F/g, and shows a good capacitive performance. The prepared ACF can be used as the electrode material for supercapacitors.展开更多
As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by ...As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by metal-mediated coupling reaction requiring harsh reaction conditions,multiple-step synthesis,and cumbersome purification,which is not cost-efficient and may bring toxicity concerns.It is not favorable to the production of photovoltaic polymers and PSC devices on a large scale,and therefore unsuitable for the PSCs industrialization.Direct arylation coupling reaction via aromatic C―H bonds activation enables the synthesis of conjugated polymers under mild conditions and simultaneously reduces synthetic steps,difficulty,and toxic reaction byproducts.This review provides an overview of the history of preparing representative photovoltaic polymers utilized in PSCs through direct arylation reactions and discusses the activity and selectivity of C―H bonds in typical building blocks under different reaction conditions.Especially,the impact of direct arylation condition on defect formation and photovoltaic performance of the photovoltaic polymers is addressed and compared with conventional Stille coupling methods.展开更多
Manufacturing and integration of micro-electro-mechanical systems (MEMS) devices and integrated circuits (ICs) by wafer bonding often generate problems caused by thermal properties of materials. This paper present...Manufacturing and integration of micro-electro-mechanical systems (MEMS) devices and integrated circuits (ICs) by wafer bonding often generate problems caused by thermal properties of materials. This paper presents a low temperature wafer direct bonding process assisted by 02 plasma. Silicon wafers were treated with wet chemical cleaning and subsequently activated by 02 plasma in the etch element of a sputtering system. Then, two wafers were brought into contact in the bonder followed by annealing in N2 atmosphere for several hours. An infrared imaging system was used to detect bonding defects and a razor blade test was carried out to determine surface energy. The bonding yield reaches 90%--95% and the achieved surface energy is 1.76 J/m2 when the bonded wafers are annealed at 350 ~C in N2 atmosphere for 2 h. Void formation was systematically observed and eli-mination methods were proposed. The size and density of voids greatly depend on the annealing temperature. Short O2 plasma treatment for 60 s can alleviate void formation and enhance surface energy. A pulling test reveals that the bonding strength is more than 11.0 MPa. This low temperature wafer direct bonding process provides an efficient and reliable method for 3D integration, system on chip, and MEMS packaging.展开更多
The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse ga...The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances.展开更多
Two conjugated polymers HXS-1 and PDFCDTBT were prepared by direct C–H activation and Suzuki polycondensation and their chemical structures were characterized by 1H NMR spectroscopy.The molecular weight of conjugated...Two conjugated polymers HXS-1 and PDFCDTBT were prepared by direct C–H activation and Suzuki polycondensation and their chemical structures were characterized by 1H NMR spectroscopy.The molecular weight of conjugated polymer synthesized by direct C–H activation is lower than the corresponding polymers prepared by Suzuki polycondensation.Conjugated polymers synthesized by direct C–H activation have considerable solubility in common organic solvents and form amorphous film.The photovoltaic property of conjugated polymers synthesized by direct C–H activation is inferior to the corresponding polymers synthesized by Suzuki polycondensation.展开更多
文摘基于2003—2021年省际面板数据,根据耦合协调度模型测算我国省域双向FDI(foreign direct investment)互动发展水平,运用双向固定效应模型考察双向FDI互动对区域创业活跃度的影响。研究发现,双向FDI互动显著提升了区域创业活跃度,在影响过程中,经济增长和产业结构发挥正向调节作用,政府干预发挥逆向调节作用。异质性检验结果表明,在市场规模越大、创新能力越强和城市化水平越高的区域中,双向FDI互动越能促进区域创业活跃度提升。
基金The National Natural Science Foundation of China(No.22169009)Jiangxi Provincial Natural Science Foundation(No.20212ACB204007)Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(20212BCD42018)are appreciated for financial support。
文摘The rapid synthesis of structurally complicated electron donors&acceptors still remains a major challenge in organic solar cells(OSC).In this work,we developed a highly efficient strategy to access long-chain oligomeric donor and acceptors for OSC applications.A series of cyclopentadithiophene(CPDT)and benzothiadiazole(BT)-basedπ-conjugated oligomers,i.e.,three oligomeric acceptors(BTDT)n-IC(n=1—3)and one long-chain oligomeric donor(BTDT)4-RD,are facilely synthesized by an atom-and step-economical,and labor-saving direct C—H arylation(DACH)reaction(i.e.,C—H/C—Br cross coupling).Note that(BTDT)4-RD involving five CPDT,four BT and two rhodamine(RD)building blocks is the longest oligomeric donor in the fullerene-free OSC devices ever reported.The dependence of the structure-property-performance correlation of(BTDT)n-IC(n=1—3)and(BTDT)4-RD on theπ-conjugation lengths is thoroughly investigated by opto-electrochemical measurements,bulk heterojunction(BHJ)OSC devices and microscopies.The(BTDT)1-IC:PBDB-T and(BTDT)4-RD:Y6 BHJs achieve power conversion efficiencies of 9.14%and 4.51%,respectively.Our findings demonstrate that DACH reaction is a powerful tool to tune the opto-electronic properties and device performances by regulating the lengths ofπ-conjugated oligomers with varied numbers of repeating units.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)China Postdoctoral Science Foundation(No.2018T111000)Applied Basic Research Foundation of Yunnan Province(No.2018FD035).
文摘Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.
基金We thank the support from National Key R&D Program of China(2022YFA1504302,2021YFF0701603)National Natural Science Foundation of China(U22A20388,92256302,21925109 for B.-F.S.,22271250 for T.Z.)+1 种基金Fundamental Research Funds for the Central Universities(226-2023-00115,226-2022-00224,226-2022-00175)Zhejiang Provincial NSFC(LD22B030003)。
文摘Axially chiral N-arylindoles bearing a stereogenic C—N axis are unique important scaffolds in natural products,advance materials,pharmaceuticals and privileged chiral ligands or catalysts.Herein,we report the direct synthesis of C—N axially chiral N-arylindoles through a Pd-catalyzed free amine-directed atroposelective C—H olefination enabled by a spiro phosphoric acid(SPA)ligand.A wide range of enantioenriched N-aromatic amine indoles were obtained in high yields with good enantioselectivities(35 examples,up to 91%yield and up to 96%ee).The chiral products with free amine group offer an effective functional handle for down-stream diversity-oriented synthesis.
基金Supported by the National Natural Science Foundation of China(No.21273097) and the Key Project of Jilin Province, China(No.20126010).
文摘The activated carbon fiber(ACF) was prepared from polyacrylonitrile-based pre-oxidized fiber(PANOF) by KOH direct activation. The influence of activation conditions including impregnation ratio(the mass ratio of PANOF to KOH), activation temperature and activation time on the pore structure and electrochemical properties of ACF was investigated, and the corresponding activation mechanism was proposed. The ACF prepared at an activation temperature of 800℃ and an impregnation ratio(the mass ratio of PANOF to KOH) of 1:2 for an activation time of 1 b in 6 mol/L KOH solution exhibits a specific surface area of 3029 m^2/g, a mesoporosity of 84.2% and a specific capacitance of 288 F/g, and shows a good capacitive performance. The prepared ACF can be used as the electrode material for supercapacitors.
基金the National Natural Science Foundation of China(No.51773046)the Fundamental Research Funds for the Central Universities,the School of Materials Science and Engineering,Shaanxi Normal Universitythe Project of Key Laboratory of Organic Synthesis of Jiangsu Province,College of Chemistry Chemical Engineering and Materials Science,Soochow University。
文摘As the high calibre candidate of lightweight and flexible solar cells,polymer solar cells(PSCs)have made tremendous progress in recent years.However,the active photovoltaic materials in PSCs are mainly synthesized by metal-mediated coupling reaction requiring harsh reaction conditions,multiple-step synthesis,and cumbersome purification,which is not cost-efficient and may bring toxicity concerns.It is not favorable to the production of photovoltaic polymers and PSC devices on a large scale,and therefore unsuitable for the PSCs industrialization.Direct arylation coupling reaction via aromatic C―H bonds activation enables the synthesis of conjugated polymers under mild conditions and simultaneously reduces synthetic steps,difficulty,and toxic reaction byproducts.This review provides an overview of the history of preparing representative photovoltaic polymers utilized in PSCs through direct arylation reactions and discusses the activity and selectivity of C―H bonds in typical building blocks under different reaction conditions.Especially,the impact of direct arylation condition on defect formation and photovoltaic performance of the photovoltaic polymers is addressed and compared with conventional Stille coupling methods.
基金Project supported by the Foreign Cultural and Educational Experts Employing Plan,Ministry of Education,China (No. TS2010CQDX 056)the Fundamental Research Funds for the Central Universi-ties,China (No. CDJZR12135502)
文摘Manufacturing and integration of micro-electro-mechanical systems (MEMS) devices and integrated circuits (ICs) by wafer bonding often generate problems caused by thermal properties of materials. This paper presents a low temperature wafer direct bonding process assisted by 02 plasma. Silicon wafers were treated with wet chemical cleaning and subsequently activated by 02 plasma in the etch element of a sputtering system. Then, two wafers were brought into contact in the bonder followed by annealing in N2 atmosphere for several hours. An infrared imaging system was used to detect bonding defects and a razor blade test was carried out to determine surface energy. The bonding yield reaches 90%--95% and the achieved surface energy is 1.76 J/m2 when the bonded wafers are annealed at 350 ~C in N2 atmosphere for 2 h. Void formation was systematically observed and eli-mination methods were proposed. The size and density of voids greatly depend on the annealing temperature. Short O2 plasma treatment for 60 s can alleviate void formation and enhance surface energy. A pulling test reveals that the bonding strength is more than 11.0 MPa. This low temperature wafer direct bonding process provides an efficient and reliable method for 3D integration, system on chip, and MEMS packaging.
基金the frame of ERC Synergy SCOPE(project 810182)PRIN 2015 SMARTNESS project nr.2015K7FZLH projects which are gratefully acknowledgeda SINCHEM Grant.SINCHEM is a Joint Doctorate program selected under the Erasmus Mundus Action 1 Programme(FPA 2013-0037)。
文摘The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances.
基金supported by the National Basic Research Program of China(2011CB935702)the National Natural Science Foundation of China(51003006 and 21161160443)the Fundamental Research Funds for the Central Universities
文摘Two conjugated polymers HXS-1 and PDFCDTBT were prepared by direct C–H activation and Suzuki polycondensation and their chemical structures were characterized by 1H NMR spectroscopy.The molecular weight of conjugated polymer synthesized by direct C–H activation is lower than the corresponding polymers prepared by Suzuki polycondensation.Conjugated polymers synthesized by direct C–H activation have considerable solubility in common organic solvents and form amorphous film.The photovoltaic property of conjugated polymers synthesized by direct C–H activation is inferior to the corresponding polymers synthesized by Suzuki polycondensation.