The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution ...The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode.展开更多
The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a ther...The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.展开更多
An experimental investigation has been carried out with aa point focusing dish reflector of 12 square meters aperture area, exposed to the average direct normal irradiations of 810 W/m^2. This work focuses on enhancin...An experimental investigation has been carried out with aa point focusing dish reflector of 12 square meters aperture area, exposed to the average direct normal irradiations of 810 W/m^2. This work focuses on enhancinge the energy and exergy efficiencies of the cavity receiver by minimizing the temperature difference between the wall and heat transfer fluids. Two heat transfer fluids Water and SiC + water nano fluid have been prepared from 50 nm particle size and 1% of volume fraction, and experimented separately for the flow rates of 0.2 lpm to 0.6 lpm with an interval of 0.1 lpm. The enhanced thermal conductivity of nano fluid is 0.800115 W/mK with the k_(eff)/k_b ratio of 1.1759 determined by using the Koo and Kleinstreuer correlation. The maximum attained energy and exergy efficiencies are 29.14% and 24.82% for water, and 32.91% and 39.83% for SiC+water nano fluid. The nano fluid exhibits enhanced energy and exergy efficiency of 12.94% and 60.48% than that of water at the flow rate of 0.5 lpm. The result shows that the system with SiC+Water produces higher exergy efficiency as compared to energy efficiency; in the case of water alone, the energy efficiency is higher than exergy efficiency.展开更多
For hypersonic vehicles,as the temperature in its boundary layer usually exceeds 600 K,for which the molecular vibrational degree of freedom is excited,the perfect gas model is no longer valid.In this paper,the effect...For hypersonic vehicles,as the temperature in its boundary layer usually exceeds 600 K,for which the molecular vibrational degree of freedom is excited,the perfect gas model is no longer valid.In this paper,the effect of high temperature induced variation of specific heat on the hypersonic turbulent boundary layer of flat plates is investigated by direct numerical simulations with the perfect gas model,i.e.with constant specific heat,as well as with a variable specific heat gas model.The comparison of the results from the two gas models has found that the effect of the variation of specific heat on the velocity of the turbulent boundary layers is relatively small,while its effect on temperature,such as the mean temperature,the temperature fluctuations,is appreciable.It is also found that the mean specific heat is quite close to the specific heat calculated by using the mean temperature,indicating that it is possible to do turbulence modeling.The modeling is done under the variable specific heat gas model with the mean temperature as the variable.The feasibility of such consideration is verified by applying the SST model for variable specific heat turbulence computation.展开更多
Heat-driven thermoacoustic refrigeration has drawn extensive concern in the past decades due to its advantages of high reliability and external heat-driven mechanism.In such a system,heat can be firstly converted into...Heat-driven thermoacoustic refrigeration has drawn extensive concern in the past decades due to its advantages of high reliability and external heat-driven mechanism.In such a system,heat can be firstly converted into acoustic power and then the acoustical power drives a refrigerator to generate cooling effect without any moving mechanical components.So far,most of researches on heat-driven thermoacoustic refrigeration have focused on cryo- genic application,such as natural gas liquefaction [1,2].In addition, heat-driven thermoacoustic refrigeration also plays important roles in recovering waste heat and provides an environment- friendly alternative to the current abso'rption chiller especially in the small-scale power range [3-7].However,two main obstacles to use the thermoacoustic technology in practice are its relatively low cooling capacity and low cooling efficiency.Either the two-loop configuration proposed by Luo et al.[5]or the configuration of a one-unit refrigerator driven by a three-unit engine brought forward by Kees [6],they both suffer from phase-shifting tube and mismatch between the thermoacoustic engine (TAE)and thermoacoustic refrigerator (TAR).展开更多
The present study proposes a novel method based on the geometric theory for measuring the distribution of bubble swarms in the circular region of a direct-contact heat exchanger.It was determined that the mixing is un...The present study proposes a novel method based on the geometric theory for measuring the distribution of bubble swarms in the circular region of a direct-contact heat exchanger.It was determined that the mixing is uniform when the average distance between the bubble swarms in the unit circular region is approximately 0.9054,which is the standard reference value.The effect of sample size(i.e.,the number of bubbles)on mixing uniformity was investigated to determine the optimal sample size.It was verified that the metric's accuracy and stability were higher with a sample size of 155.Accordingly,it was proposed to increase the sample size by filling irregular bubbles using a segmentation method,which enabled a further accurate assessment of the mixing uniformity.The mixing uniformity of bubble swarms in the circular region and its maximum internal connection with the square region was accurately quantified.It was revealed that the relative average error increased by approximately 3.47% due to information loss.The proposed method was demonstrated to be rotationally invariant.The present study provided novel insights into evaluating mixing uniformity,which would guide enhanced heat transfer and the effective evaluation of the spatiotemporal characteristics of transient mixing in circular regions or the cross-sections of chemical transport pipelines.展开更多
The convective heat transfer of the plume of a 120-N thruster is investigated experimentally and numerically. Numerical results agree well with experimental results in that there is a nonlinear decrease in convective ...The convective heat transfer of the plume of a 120-N thruster is investigated experimentally and numerically. Numerical results agree well with experimental results in that there is a nonlinear decrease in convective heat transfer with an increasing cone angle. It is also found that convective heat transfer decreases with increasing distance from the thruster outlet. Furthermore, the convective heat transfer of the plume mainly concentrates within a 35° cone angle and the heat flux decreases to the same order as solar radiation at the Earth’s surface when the cone angle exceeds 60°. The results of the study will help improve spacecraft design.展开更多
In this study, a novel model of photothermal conversion in a direct absorption solar collector based on the Monte Carlo and finite volume methods was built and validated and the temperatures of the novel and tradition...In this study, a novel model of photothermal conversion in a direct absorption solar collector based on the Monte Carlo and finite volume methods was built and validated and the temperatures of the novel and traditional solar collectors were compared. The sensitivity of the parameters to the radiative heat loss was investigated. Finally, the radiative heat transfer characteristics were discussed using the radiative exchange factor. The results of this study validated the advantages of the novel solar collector at both the surface and fluid temperatures. Under the conditions used in this study, the maximum temperature difference of the novel solar collector was 30 K, compared with 193 K for the traditional solar collector. Furthermore, the collector was divided into several units along the flow direction. The radiative exchange factor indicated that with an increase in the attenuation coefficient, the percentage of radiation intensity in the total solar radiation absorbed by the corresponding unit increased.Simultaneously, it decreased with an increase in the incident angle and scattering albedo. These results provide a reference for addressing the low efficiency and thermal damage caused by traditional solar collectors at high temperatures.展开更多
Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing...Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.展开更多
对一种中型直膨式太阳能PVT(光伏/光热)热泵热电联产系统进行了实验研究。通过对PV(光伏)组件与直膨式集热/蒸发器的合理耦合构建PVT热泵系统,直膨式背板可吸收太阳能电池废热,降低太阳能电池温度,有效提高光伏组件发电效率,同时提高了...对一种中型直膨式太阳能PVT(光伏/光热)热泵热电联产系统进行了实验研究。通过对PV(光伏)组件与直膨式集热/蒸发器的合理耦合构建PVT热泵系统,直膨式背板可吸收太阳能电池废热,降低太阳能电池温度,有效提高光伏组件发电效率,同时提高了热泵循环蒸发温度和蒸发压力,改善了热泵系统的运行性能。背板采用新型直膨式集热/蒸发器流道结构,结合PVT组件阵列管路设计,有效提升了冷媒分布均一性和PVT组件工作温度的均匀性。实验结果表明系统在热水模式下的平均COP(Coefficient of Performance)可达6.45,供暖模式的平均COP达4.24。系统所发电量可用于自身压缩机、水泵运行或并入电网,且提供55℃以上的热水,从而实现太阳能PVT热泵系统高效热电联产。展开更多
文摘The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode.
文摘The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.
文摘An experimental investigation has been carried out with aa point focusing dish reflector of 12 square meters aperture area, exposed to the average direct normal irradiations of 810 W/m^2. This work focuses on enhancinge the energy and exergy efficiencies of the cavity receiver by minimizing the temperature difference between the wall and heat transfer fluids. Two heat transfer fluids Water and SiC + water nano fluid have been prepared from 50 nm particle size and 1% of volume fraction, and experimented separately for the flow rates of 0.2 lpm to 0.6 lpm with an interval of 0.1 lpm. The enhanced thermal conductivity of nano fluid is 0.800115 W/mK with the k_(eff)/k_b ratio of 1.1759 determined by using the Koo and Kleinstreuer correlation. The maximum attained energy and exergy efficiencies are 29.14% and 24.82% for water, and 32.91% and 39.83% for SiC+water nano fluid. The nano fluid exhibits enhanced energy and exergy efficiency of 12.94% and 60.48% than that of water at the flow rate of 0.5 lpm. The result shows that the system with SiC+Water produces higher exergy efficiency as compared to energy efficiency; in the case of water alone, the energy efficiency is higher than exergy efficiency.
基金supported by the National Natural Science Foundation of China (Grant Nos.10632050,90716007 and 10772134)The National Basic Research Program of China (Grant No.2009CB724103)
文摘For hypersonic vehicles,as the temperature in its boundary layer usually exceeds 600 K,for which the molecular vibrational degree of freedom is excited,the perfect gas model is no longer valid.In this paper,the effect of high temperature induced variation of specific heat on the hypersonic turbulent boundary layer of flat plates is investigated by direct numerical simulations with the perfect gas model,i.e.with constant specific heat,as well as with a variable specific heat gas model.The comparison of the results from the two gas models has found that the effect of the variation of specific heat on the velocity of the turbulent boundary layers is relatively small,while its effect on temperature,such as the mean temperature,the temperature fluctuations,is appreciable.It is also found that the mean specific heat is quite close to the specific heat calculated by using the mean temperature,indicating that it is possible to do turbulence modeling.The modeling is done under the variable specific heat gas model with the mean temperature as the variable.The feasibility of such consideration is verified by applying the SST model for variable specific heat turbulence computation.
基金financially supported by the National Key Research and Development Program of China (2016YFB0901403)the National Natural Science Foundation of China (51506211 and 51876214)+1 种基金the Foundation of Director of Technical Institute of Physics and Chemistry, CAS (2017-ZLM)CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry (Youth Innovation Fund CRYOQN201701)
文摘Heat-driven thermoacoustic refrigeration has drawn extensive concern in the past decades due to its advantages of high reliability and external heat-driven mechanism.In such a system,heat can be firstly converted into acoustic power and then the acoustical power drives a refrigerator to generate cooling effect without any moving mechanical components.So far,most of researches on heat-driven thermoacoustic refrigeration have focused on cryo- genic application,such as natural gas liquefaction [1,2].In addition, heat-driven thermoacoustic refrigeration also plays important roles in recovering waste heat and provides an environment- friendly alternative to the current abso'rption chiller especially in the small-scale power range [3-7].However,two main obstacles to use the thermoacoustic technology in practice are its relatively low cooling capacity and low cooling efficiency.Either the two-loop configuration proposed by Luo et al.[5]or the configuration of a one-unit refrigerator driven by a three-unit engine brought forward by Kees [6],they both suffer from phase-shifting tube and mismatch between the thermoacoustic engine (TAE)and thermoacoustic refrigerator (TAR).
基金the National Natural Science Foundation of China(project No.52166004)Yunnan Major Scientific and Technological Projects(grant No.202202AG050002)+2 种基金Scientific Research Fund Project of Yunnan Education Department,China(grant No.2021j0063)Natural Science FoundationofYunnan Province,China(grant No.202101AU070031)the teaching projects A Quality Course for Graduate Students in Yunnan Province"Numerical Analysis","Advanced Mathematics Teaching Team of Engineering Subjects of Kunming University of Science and Technology".
文摘The present study proposes a novel method based on the geometric theory for measuring the distribution of bubble swarms in the circular region of a direct-contact heat exchanger.It was determined that the mixing is uniform when the average distance between the bubble swarms in the unit circular region is approximately 0.9054,which is the standard reference value.The effect of sample size(i.e.,the number of bubbles)on mixing uniformity was investigated to determine the optimal sample size.It was verified that the metric's accuracy and stability were higher with a sample size of 155.Accordingly,it was proposed to increase the sample size by filling irregular bubbles using a segmentation method,which enabled a further accurate assessment of the mixing uniformity.The mixing uniformity of bubble swarms in the circular region and its maximum internal connection with the square region was accurately quantified.It was revealed that the relative average error increased by approximately 3.47% due to information loss.The proposed method was demonstrated to be rotationally invariant.The present study provided novel insights into evaluating mixing uniformity,which would guide enhanced heat transfer and the effective evaluation of the spatiotemporal characteristics of transient mixing in circular regions or the cross-sections of chemical transport pipelines.
文摘The convective heat transfer of the plume of a 120-N thruster is investigated experimentally and numerically. Numerical results agree well with experimental results in that there is a nonlinear decrease in convective heat transfer with an increasing cone angle. It is also found that convective heat transfer decreases with increasing distance from the thruster outlet. Furthermore, the convective heat transfer of the plume mainly concentrates within a 35° cone angle and the heat flux decreases to the same order as solar radiation at the Earth’s surface when the cone angle exceeds 60°. The results of the study will help improve spacecraft design.
基金supported by the National Natural Science Foundation of China (Grant No. 52041601)Hebei Natural Science Foundation (Grant No. E202203156)+1 种基金Chinese Scholarship Council (Grant No. 202106120167)partly funded the research activities—Enabling cooperation of the Harbin Institute of Technology with the Technical University of Denmark。
文摘In this study, a novel model of photothermal conversion in a direct absorption solar collector based on the Monte Carlo and finite volume methods was built and validated and the temperatures of the novel and traditional solar collectors were compared. The sensitivity of the parameters to the radiative heat loss was investigated. Finally, the radiative heat transfer characteristics were discussed using the radiative exchange factor. The results of this study validated the advantages of the novel solar collector at both the surface and fluid temperatures. Under the conditions used in this study, the maximum temperature difference of the novel solar collector was 30 K, compared with 193 K for the traditional solar collector. Furthermore, the collector was divided into several units along the flow direction. The radiative exchange factor indicated that with an increase in the attenuation coefficient, the percentage of radiation intensity in the total solar radiation absorbed by the corresponding unit increased.Simultaneously, it decreased with an increase in the incident angle and scattering albedo. These results provide a reference for addressing the low efficiency and thermal damage caused by traditional solar collectors at high temperatures.
基金Projects(51375070,51574058) supported by the National Natural Science Foundation of China
文摘Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.
文摘对一种中型直膨式太阳能PVT(光伏/光热)热泵热电联产系统进行了实验研究。通过对PV(光伏)组件与直膨式集热/蒸发器的合理耦合构建PVT热泵系统,直膨式背板可吸收太阳能电池废热,降低太阳能电池温度,有效提高光伏组件发电效率,同时提高了热泵循环蒸发温度和蒸发压力,改善了热泵系统的运行性能。背板采用新型直膨式集热/蒸发器流道结构,结合PVT组件阵列管路设计,有效提升了冷媒分布均一性和PVT组件工作温度的均匀性。实验结果表明系统在热水模式下的平均COP(Coefficient of Performance)可达6.45,供暖模式的平均COP达4.24。系统所发电量可用于自身压缩机、水泵运行或并入电网,且提供55℃以上的热水,从而实现太阳能PVT热泵系统高效热电联产。