Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the l...Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the last two decades for their simplicity and flexibility, as well as their non-compromised accuracy. This paper presents a summary of some numerical algori- thms along the line of sharp interface direct forcing approaches and their applications in some practical problems. The algorithms include basic Navier-Stokes solvers, immersed boundary setup procedures, treatments of stationary and moving immersed bounda- ries, and fluid-structure coupling schemes. Applications of these algorithms in particulate flows, flow-induced vibrations, biofluid dynamics, and free-surface hydrodynamics are demonstrated. Some concluding remarks are made, including several future research directions that can further expand the application regime of immersed boundary methods.展开更多
In this paper, we propose a lattice Boltzmann (LB) method coupled with adirect-forcing fictitious domain (DF/FD) method for the simulation of particle suspensions. This method combines the good features of the LB and ...In this paper, we propose a lattice Boltzmann (LB) method coupled with adirect-forcing fictitious domain (DF/FD) method for the simulation of particle suspensions. This method combines the good features of the LB and the DF/FD methodsby using two unrelated meshes, namely, an Eulerian mesh for the flow domain and aLagrangian mesh for the solid domain, which avoids the re-meshing procedure anddoes not need to calculate the hydrodynamic forces at each time step. The non-slipboundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation, which preserves all remarkable advantages of the LBM in simulatingfluid flows. The present LB-DF/FD method has been validated by comparing its results with analytical results and previous numerical results for a single circular particleand two circular particles settling under gravity. The interaction between particle andwall, the process of drafting-kissing-tumbling (DKT) of two settling particles will bedemonstrated. As a manifestation of the efficiency of the present method, the settlingof a large number (128) of circular particles is simulated in an enclosure.展开更多
Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simu...Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.展开更多
文摘Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the last two decades for their simplicity and flexibility, as well as their non-compromised accuracy. This paper presents a summary of some numerical algori- thms along the line of sharp interface direct forcing approaches and their applications in some practical problems. The algorithms include basic Navier-Stokes solvers, immersed boundary setup procedures, treatments of stationary and moving immersed bounda- ries, and fluid-structure coupling schemes. Applications of these algorithms in particulate flows, flow-induced vibrations, biofluid dynamics, and free-surface hydrodynamics are demonstrated. Some concluding remarks are made, including several future research directions that can further expand the application regime of immersed boundary methods.
基金This work was supported by the Scientific Project of Zhejiang Province of China(No.2008C01024-4).
文摘In this paper, we propose a lattice Boltzmann (LB) method coupled with adirect-forcing fictitious domain (DF/FD) method for the simulation of particle suspensions. This method combines the good features of the LB and the DF/FD methodsby using two unrelated meshes, namely, an Eulerian mesh for the flow domain and aLagrangian mesh for the solid domain, which avoids the re-meshing procedure anddoes not need to calculate the hydrodynamic forces at each time step. The non-slipboundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation, which preserves all remarkable advantages of the LBM in simulatingfluid flows. The present LB-DF/FD method has been validated by comparing its results with analytical results and previous numerical results for a single circular particleand two circular particles settling under gravity. The interaction between particle andwall, the process of drafting-kissing-tumbling (DKT) of two settling particles will bedemonstrated. As a manifestation of the efficiency of the present method, the settlingof a large number (128) of circular particles is simulated in an enclosure.
基金The authors gratefully acknowledge the supports from China Postdoctoral Science Foundation (Grant No. 2014M550327), the opening foundation of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and the National Natural Science Foundation of China (Grant No. 11372275). The authors are also grateful to Chengbo Yu and Liang Yu for their introduction of the choanoid fluidized bed bioreactor and helpful discussions.
文摘Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.