Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From sa...Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From satellite data analysis, it is demonstrated that most of the precipitation over the TP is from deep convection clouds. Moreover, the huge TP mechanical forcing and extraordinary elevated thermal forcing impose remarkable impacts upon local circulation and global climate. In winter and spring, stream flow is deflected by a large obstacle and appears as an asymmetric dipole, making East Asia much colder than mid Asia in winter and forming persistent rainfall in late winter and early spring over South China. In late spring, TP heating contributes to the establishment and intensification of the South Asian high and the abrupt seasonal transition of the surrounding circulations. In summer, TP heating in conjunction with the TP air pump cause the deviating stream field to resemble a cyclonic spiral, converging towards and rising over the TP. Therefore, the prominent Asian monsoon climate over East Asia and the dry climate over mid Asia in summer are forced by both TP local forcing and Eurasian continental forcing. Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast. On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP leads t展开更多
Based on Green's theorem, a time domain numerical model was constructed to simulate wave making phenomenon caused by a moving ship. In this article, the Rankine sources and dipoles were placed on boundary surfaces (...Based on Green's theorem, a time domain numerical model was constructed to simulate wave making phenomenon caused by a moving ship. In this article, the Rankine sources and dipoles were placed on boundary surfaces (i.e., the ship surface and free surface), and a time-stepping scheme was employed. Its unique characteristic is that steady state can be realized from initial value by employing the time-stepping scheme and unsteady free surface conditions. In time domain, if the results of unsteady flow problem tend to data stabilization after many time steps of computation, they could be regarded as the data of steady ones. This model could be employed to steady or unsteady problems. Theoretical reasoning and computational process of this method was described in detail The linear and nonlinear boundary conditions on body surface were studied, and the relative means to realize these boundary conditions in iterative computation were also discussed. Some proper parameters about the model of the Wigley hull were determined by many numerical tests, and their influences on wave making resistance and wave pattern were discussed. According to the comparison between numerical results and data available in relative references, the method used in this work is proven to be a reliable method in time domain. And the lattice reorganization in every time step computation is a feasible numerical approach.展开更多
Discrete dipoles located near the crack tip play an important rolein nonlinear electric field induced fracture of piezoelectricceramics. A physico-mathematical model of dipole is constructed oftwo gen- eralized concen...Discrete dipoles located near the crack tip play an important rolein nonlinear electric field induced fracture of piezoelectricceramics. A physico-mathematical model of dipole is constructed oftwo gen- eralized concentrated piezoelectric forces with equaldensity and opposite sign. The interaction between crack and electricdipole in piezoelectricity is analyzed. The closed form solutions,including those for stress and electric displacement, crack openingdisplacement and electric potential, are obtained. The function ofpi- ezoelectric anisotropic direction, p_α(θ)=cosθ+p_αsinθ, canbe used to express the influence of a dipole's direction. In the casethat a dipole locates near crack tip, the piezoelectric stressintensity factor is a power function with -3/2 index of the distancebetween dipole and crack tip.展开更多
BACKGROUND: Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to significantly reduce epileptiform discharges and control clinical seizures in intractable epilepsy patients. The locat...BACKGROUND: Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to significantly reduce epileptiform discharges and control clinical seizures in intractable epilepsy patients. The location of epileptic foci and magnetic stimulation sites remain uncertain. The effects of rTMS on electroencephalogram and seizure remain unclear in epileptic patients following dipole source localization. OBJECTIVE: To investigate the effects of low-frequency rTMS on electroencephalogram and seizure in temporal lobe epilepsy patients after dipole source localization. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the outpatient clinic Department of Neurology, Hospital Affiliated to North Sichuan Medical College from December 2003 to February 2007. PARTICIPANTS: A total of 30 temporal lobe epilepsy patients, comprising 19 males and 11 females, aged 1749 years, presented with epileptiform discharges and were enrolled for this study. Disease course ranged between 1-6 years, with 1-5 seizures per month. Imaging examinations revealed 11 patients with structural changes in the brain. The patients were randomly and equally assigned into drug treatment and transcranial magnetic stimulation (TMS) groups. METHODS: Patients in the drug treatment group were orally treated with carbamazepine. Patients in the TMS group received oral carbamazepine treatment of and TMS. A Maglite-r25 magnetic stimulator (Dantec Dynamics, Denmark) was used to stimulate epileptic foci in the temporal lobe following electroencephalogram dipole localization (1 Hz, 90% threshold intensity, at a stimulation frequency of 500 times, once a day, for 7 days). MAIN OUTCOME MEASURES: At 30 days after TMS, seizure frequency and rate of epileptiform discharges were observed in patients from both groups. Therapeutic safety was investigated during treatment. RESULTS: Within 30 days of treatment, there were no significant differences in seizure frequency between the TMS group (1.5 ± 0.3) seiz展开更多
We present a review of terahertz plasmonic metamaterial devices that have functionalities and applications ranging from sensing, enhanced electromagnetic fields, and near field manipulation. Metamaterials allow the pr...We present a review of terahertz plasmonic metamaterial devices that have functionalities and applications ranging from sensing, enhanced electromagnetic fields, and near field manipulation. Metamaterials allow the properties of light propagation to be manipulated at will by using a combination of appropriately designed geometry and suitable materials at the unit cell level. In this review, we first discuss the sensing aspect of a planar plasmonic metamaterial and how to overcome its limitations. Conventional symmetric metamaterials are limited by their low Q factor, thus we probed the symmetry broken plasmonic metama- terial structures in which the interference between a broad continuum mode and a narrow localized mode leads to the excitation of the sharp Fano resonances. We also discuss the near field mediated excitation of dark plasmonic modes in metamaterials that is caused by a strong coupling from the bright mode res- onator. The near field coupling between the dark and bright mode resonances leads to classical analogue of electromagnetically induced transparency in plasmonic systems. Finally, we discuss active switching in terahertz metamateriMs based on high temperature superconductors that holds the promise of reducing the resistive losses in these systems, though it fails to suppress the radiation loss in plasmonic metamaterial at terahertz frequencies.展开更多
This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an an...This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.展开更多
The influences of dipole-dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis Cummings model have been investigated by means of W...The influences of dipole-dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis Cummings model have been investigated by means of Wootters' concurrence, respectively. The results show that the entanglement between the two atoms can be enhanced via appropriately tuning the strength of dipole-dipole interaction of two atoms or the detunings between atom and cavity, and the so-called sudden death effect can he weakened simultaneously.展开更多
Magnetic skyrmions emerge when the energy of ferromagnetic exchange interaction promoting parallel alignment of spins enters in competition with energies favoring non-collinear alignment of spins such as Dzy aloshinsk...Magnetic skyrmions emerge when the energy of ferromagnetic exchange interaction promoting parallel alignment of spins enters in competition with energies favoring non-collinear alignment of spins such as Dzy aloshinskii-Moriya interaction(DMI),long-rang dipole-dipole interaction(DDI),or higher-order exchange interactions.We perform an unbiased Monte Carlo simulation to study the DMI-based skyrmion nucleation and stabilization on the surface of magnetic nanotubular monolayer controlled by tuning constants of DDI(g) and next-nearest-neighbor antiferromagnetic exchange interaction(j') with appropriate balance.Without g and j',the loosely distributed skyrmions initially nucleate on the surface of nanotube approaching to the magnetic field(h) direction with increasing h in the intermediate range.Then,the skyrmion size,shape,density,distribution and crystal structure,as well as its driven field range,are tailored by g and j'.This work demonstrates the skyrmion nucleation mechanisms in three-dimensional magnetic nanostructures with curvature effect and multiple interactions,serving as a benchmark for a guide to experimentalists for preparation of samples in magnetic skyrmion states.展开更多
This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thicknes...This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.展开更多
基金This work was jointly supported by the National Key Basic Research and Development Project of China under Grant Nos. 2006CB403607 and 2004CB418302by the Natural Science Foundation of China under Grant Nos. 40475027, 40221503, 40575028, and 40523001.
文摘Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From satellite data analysis, it is demonstrated that most of the precipitation over the TP is from deep convection clouds. Moreover, the huge TP mechanical forcing and extraordinary elevated thermal forcing impose remarkable impacts upon local circulation and global climate. In winter and spring, stream flow is deflected by a large obstacle and appears as an asymmetric dipole, making East Asia much colder than mid Asia in winter and forming persistent rainfall in late winter and early spring over South China. In late spring, TP heating contributes to the establishment and intensification of the South Asian high and the abrupt seasonal transition of the surrounding circulations. In summer, TP heating in conjunction with the TP air pump cause the deviating stream field to resemble a cyclonic spiral, converging towards and rising over the TP. Therefore, the prominent Asian monsoon climate over East Asia and the dry climate over mid Asia in summer are forced by both TP local forcing and Eurasian continental forcing. Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast. On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP leads t
文摘Based on Green's theorem, a time domain numerical model was constructed to simulate wave making phenomenon caused by a moving ship. In this article, the Rankine sources and dipoles were placed on boundary surfaces (i.e., the ship surface and free surface), and a time-stepping scheme was employed. Its unique characteristic is that steady state can be realized from initial value by employing the time-stepping scheme and unsteady free surface conditions. In time domain, if the results of unsteady flow problem tend to data stabilization after many time steps of computation, they could be regarded as the data of steady ones. This model could be employed to steady or unsteady problems. Theoretical reasoning and computational process of this method was described in detail The linear and nonlinear boundary conditions on body surface were studied, and the relative means to realize these boundary conditions in iterative computation were also discussed. Some proper parameters about the model of the Wigley hull were determined by many numerical tests, and their influences on wave making resistance and wave pattern were discussed. According to the comparison between numerical results and data available in relative references, the method used in this work is proven to be a reliable method in time domain. And the lattice reorganization in every time step computation is a feasible numerical approach.
基金National Natural Science Foundation of China(No.10072033).
文摘Discrete dipoles located near the crack tip play an important rolein nonlinear electric field induced fracture of piezoelectricceramics. A physico-mathematical model of dipole is constructed oftwo gen- eralized concentrated piezoelectric forces with equaldensity and opposite sign. The interaction between crack and electricdipole in piezoelectricity is analyzed. The closed form solutions,including those for stress and electric displacement, crack openingdisplacement and electric potential, are obtained. The function ofpi- ezoelectric anisotropic direction, p_α(θ)=cosθ+p_αsinθ, canbe used to express the influence of a dipole's direction. In the casethat a dipole locates near crack tip, the piezoelectric stressintensity factor is a power function with -3/2 index of the distancebetween dipole and crack tip.
基金the Youth Foundation Program of Sichuan Province,No.04ZQ026-010
文摘BACKGROUND: Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to significantly reduce epileptiform discharges and control clinical seizures in intractable epilepsy patients. The location of epileptic foci and magnetic stimulation sites remain uncertain. The effects of rTMS on electroencephalogram and seizure remain unclear in epileptic patients following dipole source localization. OBJECTIVE: To investigate the effects of low-frequency rTMS on electroencephalogram and seizure in temporal lobe epilepsy patients after dipole source localization. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the outpatient clinic Department of Neurology, Hospital Affiliated to North Sichuan Medical College from December 2003 to February 2007. PARTICIPANTS: A total of 30 temporal lobe epilepsy patients, comprising 19 males and 11 females, aged 1749 years, presented with epileptiform discharges and were enrolled for this study. Disease course ranged between 1-6 years, with 1-5 seizures per month. Imaging examinations revealed 11 patients with structural changes in the brain. The patients were randomly and equally assigned into drug treatment and transcranial magnetic stimulation (TMS) groups. METHODS: Patients in the drug treatment group were orally treated with carbamazepine. Patients in the TMS group received oral carbamazepine treatment of and TMS. A Maglite-r25 magnetic stimulator (Dantec Dynamics, Denmark) was used to stimulate epileptic foci in the temporal lobe following electroencephalogram dipole localization (1 Hz, 90% threshold intensity, at a stimulation frequency of 500 times, once a day, for 7 days). MAIN OUTCOME MEASURES: At 30 days after TMS, seizure frequency and rate of epileptiform discharges were observed in patients from both groups. Therapeutic safety was investigated during treatment. RESULTS: Within 30 days of treatment, there were no significant differences in seizure frequency between the TMS group (1.5 ± 0.3) seiz
基金partially supported by the US National Science Foundation
文摘We present a review of terahertz plasmonic metamaterial devices that have functionalities and applications ranging from sensing, enhanced electromagnetic fields, and near field manipulation. Metamaterials allow the properties of light propagation to be manipulated at will by using a combination of appropriately designed geometry and suitable materials at the unit cell level. In this review, we first discuss the sensing aspect of a planar plasmonic metamaterial and how to overcome its limitations. Conventional symmetric metamaterials are limited by their low Q factor, thus we probed the symmetry broken plasmonic metama- terial structures in which the interference between a broad continuum mode and a narrow localized mode leads to the excitation of the sharp Fano resonances. We also discuss the near field mediated excitation of dark plasmonic modes in metamaterials that is caused by a strong coupling from the bright mode res- onator. The near field coupling between the dark and bright mode resonances leads to classical analogue of electromagnetically induced transparency in plasmonic systems. Finally, we discuss active switching in terahertz metamateriMs based on high temperature superconductors that holds the promise of reducing the resistive losses in these systems, though it fails to suppress the radiation loss in plasmonic metamaterial at terahertz frequencies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41175083 and 41275096)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant Nos. GYHY201006020,GYHY201106016,and GYHY201106015)
文摘This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.
基金supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘The influences of dipole-dipole interaction and detuning on the entanglement between two atoms with different initial tripartite entangled W-like states in the Tavis Cummings model have been investigated by means of Wootters' concurrence, respectively. The results show that the entanglement between the two atoms can be enhanced via appropriately tuning the strength of dipole-dipole interaction of two atoms or the detunings between atom and cavity, and the so-called sudden death effect can he weakened simultaneously.
基金financially supported by the Key Program of National Natural Science Foundation of China-Regional Innovation and Development Joint Fund (No.U22A20117)the Natural Science Foundation of Liaoning Province (No.2022-MS108)the Fundamental Research Funds for Central Universities (No.N2205015)。
文摘Magnetic skyrmions emerge when the energy of ferromagnetic exchange interaction promoting parallel alignment of spins enters in competition with energies favoring non-collinear alignment of spins such as Dzy aloshinskii-Moriya interaction(DMI),long-rang dipole-dipole interaction(DDI),or higher-order exchange interactions.We perform an unbiased Monte Carlo simulation to study the DMI-based skyrmion nucleation and stabilization on the surface of magnetic nanotubular monolayer controlled by tuning constants of DDI(g) and next-nearest-neighbor antiferromagnetic exchange interaction(j') with appropriate balance.Without g and j',the loosely distributed skyrmions initially nucleate on the surface of nanotube approaching to the magnetic field(h) direction with increasing h in the intermediate range.Then,the skyrmion size,shape,density,distribution and crystal structure,as well as its driven field range,are tailored by g and j'.This work demonstrates the skyrmion nucleation mechanisms in three-dimensional magnetic nanostructures with curvature effect and multiple interactions,serving as a benchmark for a guide to experimentalists for preparation of samples in magnetic skyrmion states.
文摘This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.