Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of ...Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.展开更多
We conducted a comprehensive study to investigate the aerodynamic characteristics and force generation of the elytra of abeetle,Allomyrina dichotoma.Our analysis included wind tunnel experiments and three-dimensional ...We conducted a comprehensive study to investigate the aerodynamic characteristics and force generation of the elytra of abeetle,Allomyrina dichotoma.Our analysis included wind tunnel experiments and three-dimensional computational fluiddynamics simulations using ANSYS-CFX software.Our first approach was a quasi-static study that considered the effect ofinduced flapping flow due to the flapping motion of the fore-wings (elytra) at a frequency of around 30 Hz to 40 Hz.The dihedralangle was varied to represent flapping motion during the upstroke and downstroke.We found that an elytron producespositive lift at 0° geometric angle of attack,negative lift during the upstroke,and always produces drag during both the upstrokeand downstroke.We also found that the lift coefficient of an elytron does not drop even at a very high geometric angle of attack.For a beetle with a body weight of 5 g,based on the quasi-static method,the fore-wings (elytra) can produce lift of less than 1%of its body weight.展开更多
Dissolved organic matters (DOM) have important influence on the environmental behavior and fate of organic pollutants, therefore rationalization of interaction mechanisms between pollutants and DOM has become a hot to...Dissolved organic matters (DOM) have important influence on the environmental behavior and fate of organic pollutants, therefore rationalization of interaction mechanisms between pollutants and DOM has become a hot topic in the field of environmental studies. In this paper, polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), widely detected pollutants, were chosen as target compounds. The effects of substituent position on the interaction between PBDEs/PCBs and DOM were explored. Equilibrium dialysis technique combined with quantum chemistry and molecular docking calculations were employed to reveal the interaction mechanism from the view of charge distribution and molecular conformation. It is shown that non-ortho-substituted isomers have larger volumes and stronger hydrophobicity than those of ortho-substituted, therefore non-ortho-substituted isomers bind more favorably with DOM by hydrophobic partition. By calculating the atomic charge distribution of target chemicals and Leonardite humic acid (LHA) molecular model, π-πinteractions between the aromatic rings of target chemicals with LHA are proposed and further proved in molecular docking calculations. There were 10, 8, 6 docking conformations demonstrating π-πinteraction with LHA for CB-77, BDE-77 and BDE-47, respectively, but none was found for CB-47. By comparing the change of dihedral angle of the aromatic rings and energy barrier, non-ortho-substituted PBDEs/PCBs have larger dihedral angle adjustment space and flexibility, which results in stronger interaction and binding capability with DOM than ortho-substituted isomers. This paper shed some lights on the effect of substituent position on the environmental behaviors of PBDEs and PCBs.展开更多
基金partly supportedby National Natural Science Foundation of China(Grant No.41472103)
文摘Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
基金supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology of the Korean government (Grant No.2010-0018884)
文摘We conducted a comprehensive study to investigate the aerodynamic characteristics and force generation of the elytra of abeetle,Allomyrina dichotoma.Our analysis included wind tunnel experiments and three-dimensional computational fluiddynamics simulations using ANSYS-CFX software.Our first approach was a quasi-static study that considered the effect ofinduced flapping flow due to the flapping motion of the fore-wings (elytra) at a frequency of around 30 Hz to 40 Hz.The dihedralangle was varied to represent flapping motion during the upstroke and downstroke.We found that an elytron producespositive lift at 0° geometric angle of attack,negative lift during the upstroke,and always produces drag during both the upstrokeand downstroke.We also found that the lift coefficient of an elytron does not drop even at a very high geometric angle of attack.For a beetle with a body weight of 5 g,based on the quasi-static method,the fore-wings (elytra) can produce lift of less than 1%of its body weight.
基金supported by the National Natural Science Foundation of China (21137001, 21077016)the National High Technology Research and Development Program of China (2012AA06A301)
文摘Dissolved organic matters (DOM) have important influence on the environmental behavior and fate of organic pollutants, therefore rationalization of interaction mechanisms between pollutants and DOM has become a hot topic in the field of environmental studies. In this paper, polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), widely detected pollutants, were chosen as target compounds. The effects of substituent position on the interaction between PBDEs/PCBs and DOM were explored. Equilibrium dialysis technique combined with quantum chemistry and molecular docking calculations were employed to reveal the interaction mechanism from the view of charge distribution and molecular conformation. It is shown that non-ortho-substituted isomers have larger volumes and stronger hydrophobicity than those of ortho-substituted, therefore non-ortho-substituted isomers bind more favorably with DOM by hydrophobic partition. By calculating the atomic charge distribution of target chemicals and Leonardite humic acid (LHA) molecular model, π-πinteractions between the aromatic rings of target chemicals with LHA are proposed and further proved in molecular docking calculations. There were 10, 8, 6 docking conformations demonstrating π-πinteraction with LHA for CB-77, BDE-77 and BDE-47, respectively, but none was found for CB-47. By comparing the change of dihedral angle of the aromatic rings and energy barrier, non-ortho-substituted PBDEs/PCBs have larger dihedral angle adjustment space and flexibility, which results in stronger interaction and binding capability with DOM than ortho-substituted isomers. This paper shed some lights on the effect of substituent position on the environmental behaviors of PBDEs and PCBs.