This study investigated the effect of the digestate application depth on soil nitrogen volatilization and vertical distribution in black loam soil and sandy loam column.The contents of soil moisture,TKN(total Kjeldahl...This study investigated the effect of the digestate application depth on soil nitrogen volatilization and vertical distribution in black loam soil and sandy loam column.The contents of soil moisture,TKN(total Kjeldahl nitrogen),ammonium nitrogen,nitrate nitrogen,and the extent of ammonia volatilization were tested by applying digestate at depths of 0 cm,2 cm,6 cm,10 cm,15 cm and 20 cm,respectively.The experimental results showed that ammonia volatilization mainly occurred in the first 10 days and reduced significantly when the application depth was deeper than 10 cm.At the same application depth,compared with the black loam,the nitrogen loss in sandy loam through ammonia volatilization was less,and the penetration depth of nitrate nitrogen and ammonium nitrogen were all deeper.In the same soil,nitrate nitrogen penetrated deeper than ammonium nitrogen at all application depths.展开更多
The objective of this work was to determine the suitability of poultry methacompost from the 2nd methanizer of the BRIN FOUNDATION in Yaokokoroko (Bondoukou, Côte d’Ivoire), to be used in the improvement of soil...The objective of this work was to determine the suitability of poultry methacompost from the 2nd methanizer of the BRIN FOUNDATION in Yaokokoroko (Bondoukou, Côte d’Ivoire), to be used in the improvement of soil fertility. The methacompost studied has a C/N ratio = 17.26, which could characterize a stable methacompost with high amending power. It also contains mineral elements Nitrogen (N) = 0.68% DM;Phosphorus (P) = 0.084% DM;Potassium (K) = 0.67% DM;Calcium (Ca) = 0.65% DM;Magnesium (Mg) = 0.15% DM. red in the standard relating to the organic amendments (NFU 44-051). The methacompost has fertilizing and amending properties and could not present any risk for vegetation and soils.展开更多
Catalytic pyrolysis of digestate to produce aromatic hydrocarbons can be combined with anaerobic fermentation to effectively transform and utilize all biomass components,which can achieve the meaningful purpose of tra...Catalytic pyrolysis of digestate to produce aromatic hydrocarbons can be combined with anaerobic fermentation to effectively transform and utilize all biomass components,which can achieve the meaningful purpose of transforming waste into high-value products.This study explored whether catalytic pyrolysis of digestate is feasible to prepare aromatic hydrocarbons by analyzing the thermogravimetric characteristics,pyrolysis characteristics,and catalytic pyrolysis characteristics of digestate.For digestate pyrolysis,an increase in temperature was found to elevate the CO,CH_4,and monocyclic aromatic hydrocarbon(benzene,toluene,and xylene;BTX)content,whereas it decreased the contents of phenols,acids,aldehydes,and other oxygenates.Furthermore,the catalytic pyrolysis process effectively inhibited the acids,phenols,and furans in the liquid,whereas the yield of BTX increased from 25.45%to 45.99%,and the selectivity of xylene was also increased from 10.32%to 28.72%after adding ZSM-5.ZSM-5 also inhibited the production of nitrogenous compounds.展开更多
The development of methods for the efficient treatment and application of food waste digestate is an important research goal.Vermicomposting via housefly larvae is an efficient way to reduce food waste and achieve its...The development of methods for the efficient treatment and application of food waste digestate is an important research goal.Vermicomposting via housefly larvae is an efficient way to reduce food waste and achieve its valorization,however,studies on the application and performance of digestate in vermicomposting are rarely.The present study aimed to investigate the feasibility of the co-treatment of food waste and digestate as an additive via larvae.Restaurant food waste(RFW)and household food waste(HFW)were selected to assess the effects of waste type on vermicomposting performance and larval quality.Waste reduction rates of 50.9%–57.8%were observed in the vermicomposting of food waste mixed with digestate at a ratio of 25%,which were slightly lower than those for treatments without the addition of digestate(62.8%–65.9%).The addition of digestate increased the germination index,with a maximum value of 82%in the RFW treatments with 25%digestate,and decreased the respiration activity,with a minimum value of 30 mg-O_(2)/g-TS.The larval productivity of 13.9%in the RFW treatment system with a digestate rate of 25%was lower that without digestate(19.5%).Materials balance shows that larval biomass and metabolic equivalent had decreasing trends as the amount of digestate increased and HFW vermicomposting exhibited lower bioconversion efficiency than that of RFW treatment system regardless of the addition of digestate.These results suggest that mixing digestate at a low ratio(25%)during vermicomposting of foodwaste especially RFW could lead to considerable larval biomass and generate relatively stable residues.展开更多
The importance of enhancing sludge dewaterability is increasing due to the considerable impact of excess sludge volume on disposal costs and on overall sludge management. This study presents an innovative approach to ...The importance of enhancing sludge dewaterability is increasing due to the considerable impact of excess sludge volume on disposal costs and on overall sludge management. This study presents an innovative approach to enhance dewaterability of anaerobic digestate(AD) harvested from a wastewater treatment plant. The combination of zero valent iron(ZVI, 0–4.0 g/g total solids(TS)) and hydrogen peroxide(HP, 0–90 mg/g TS) under pH 3.0 significantly enhanced the AD dewaterability. The largest enhancement of AD dewaterability was achieved at 18 mg HP/g TS and 2.0 g ZVI/g TS, with the capillary suction time reduced by up to 90%. Economic analysis suggested that the proposed HP and ZVI treatment has more economic benefits in comparison with the classical Fenton reaction process. The destruction of extracellular polymeric substances and cells as well as the decrease of particle size were supposed to contribute to the enhanced AD dewaterability by HP + ZVI conditioning.展开更多
基金the National Natural Science Foundation of China(No.51406032)Natural Science Foundation of Heilongjiang Province(No.E201406)+1 种基金Federal Funding of Heilongjiang Province(No.LBH-Z13044)National High-tech R&D Program of China(No.2014AA022001).
文摘This study investigated the effect of the digestate application depth on soil nitrogen volatilization and vertical distribution in black loam soil and sandy loam column.The contents of soil moisture,TKN(total Kjeldahl nitrogen),ammonium nitrogen,nitrate nitrogen,and the extent of ammonia volatilization were tested by applying digestate at depths of 0 cm,2 cm,6 cm,10 cm,15 cm and 20 cm,respectively.The experimental results showed that ammonia volatilization mainly occurred in the first 10 days and reduced significantly when the application depth was deeper than 10 cm.At the same application depth,compared with the black loam,the nitrogen loss in sandy loam through ammonia volatilization was less,and the penetration depth of nitrate nitrogen and ammonium nitrogen were all deeper.In the same soil,nitrate nitrogen penetrated deeper than ammonium nitrogen at all application depths.
文摘The objective of this work was to determine the suitability of poultry methacompost from the 2nd methanizer of the BRIN FOUNDATION in Yaokokoroko (Bondoukou, Côte d’Ivoire), to be used in the improvement of soil fertility. The methacompost studied has a C/N ratio = 17.26, which could characterize a stable methacompost with high amending power. It also contains mineral elements Nitrogen (N) = 0.68% DM;Phosphorus (P) = 0.084% DM;Potassium (K) = 0.67% DM;Calcium (Ca) = 0.65% DM;Magnesium (Mg) = 0.15% DM. red in the standard relating to the organic amendments (NFU 44-051). The methacompost has fertilizing and amending properties and could not present any risk for vegetation and soils.
基金partially funded by the GTCLC-NEG project,which received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (101018756)the Brisk 2 European project (731101)for funding this project.The project acronym was B2PB-SIN2-1001,and the project title was“Optimization of catalytic pyrolysis of digestate and sewage sludge.”。
文摘Catalytic pyrolysis of digestate to produce aromatic hydrocarbons can be combined with anaerobic fermentation to effectively transform and utilize all biomass components,which can achieve the meaningful purpose of transforming waste into high-value products.This study explored whether catalytic pyrolysis of digestate is feasible to prepare aromatic hydrocarbons by analyzing the thermogravimetric characteristics,pyrolysis characteristics,and catalytic pyrolysis characteristics of digestate.For digestate pyrolysis,an increase in temperature was found to elevate the CO,CH_4,and monocyclic aromatic hydrocarbon(benzene,toluene,and xylene;BTX)content,whereas it decreased the contents of phenols,acids,aldehydes,and other oxygenates.Furthermore,the catalytic pyrolysis process effectively inhibited the acids,phenols,and furans in the liquid,whereas the yield of BTX increased from 25.45%to 45.99%,and the selectivity of xylene was also increased from 10.32%to 28.72%after adding ZSM-5.ZSM-5 also inhibited the production of nitrogenous compounds.
基金This work is supported by the National Key R&D Program of China(No.2018YFD1100600).The authors appreciate Ms.Ning Zhang,Mr.WeiWang,and Mr.Jing Guo for their assistances in analysis.
文摘The development of methods for the efficient treatment and application of food waste digestate is an important research goal.Vermicomposting via housefly larvae is an efficient way to reduce food waste and achieve its valorization,however,studies on the application and performance of digestate in vermicomposting are rarely.The present study aimed to investigate the feasibility of the co-treatment of food waste and digestate as an additive via larvae.Restaurant food waste(RFW)and household food waste(HFW)were selected to assess the effects of waste type on vermicomposting performance and larval quality.Waste reduction rates of 50.9%–57.8%were observed in the vermicomposting of food waste mixed with digestate at a ratio of 25%,which were slightly lower than those for treatments without the addition of digestate(62.8%–65.9%).The addition of digestate increased the germination index,with a maximum value of 82%in the RFW treatments with 25%digestate,and decreased the respiration activity,with a minimum value of 30 mg-O_(2)/g-TS.The larval productivity of 13.9%in the RFW treatment system with a digestate rate of 25%was lower that without digestate(19.5%).Materials balance shows that larval biomass and metabolic equivalent had decreasing trends as the amount of digestate increased and HFW vermicomposting exhibited lower bioconversion efficiency than that of RFW treatment system regardless of the addition of digestate.These results suggest that mixing digestate at a low ratio(25%)during vermicomposting of foodwaste especially RFW could lead to considerable larval biomass and generate relatively stable residues.
基金the Australian Research Council Discovery Early Career Researcher Award(No.DE160100667)the Australian Research Council Discovery Project(No.DP170102812)+1 种基金the Philanthropic Grant for Early Career Engineering Researcher(No.GE12015)the postdoctoral fellowship support from the Japan Society for the Promotion of Science(JSPS)(No.268245)
文摘The importance of enhancing sludge dewaterability is increasing due to the considerable impact of excess sludge volume on disposal costs and on overall sludge management. This study presents an innovative approach to enhance dewaterability of anaerobic digestate(AD) harvested from a wastewater treatment plant. The combination of zero valent iron(ZVI, 0–4.0 g/g total solids(TS)) and hydrogen peroxide(HP, 0–90 mg/g TS) under pH 3.0 significantly enhanced the AD dewaterability. The largest enhancement of AD dewaterability was achieved at 18 mg HP/g TS and 2.0 g ZVI/g TS, with the capillary suction time reduced by up to 90%. Economic analysis suggested that the proposed HP and ZVI treatment has more economic benefits in comparison with the classical Fenton reaction process. The destruction of extracellular polymeric substances and cells as well as the decrease of particle size were supposed to contribute to the enhanced AD dewaterability by HP + ZVI conditioning.