为探究氮添加对濒危植物东北红豆杉幼苗生长-防御权衡的影响,为该物种的保护工作提供理论依据,本研究以东北红豆杉4年生幼苗为对象,进行了3种氮源(硫酸铵、硝酸铵和硝酸钾)和4个施氮量(30、60、90、120 kg N·hm^(-2)·a^(-1))...为探究氮添加对濒危植物东北红豆杉幼苗生长-防御权衡的影响,为该物种的保护工作提供理论依据,本研究以东北红豆杉4年生幼苗为对象,进行了3种氮源(硫酸铵、硝酸铵和硝酸钾)和4个施氮量(30、60、90、120 kg N·hm^(-2)·a^(-1))的氮添加实验。结果表明:(1)东北红豆杉幼苗的苗高增长量、地径增长量和总生物量随施氮量增加显著增加,施氮量超过90 kg N·hm^(-2)·a^(-1)后地径增长量和总生物量开始下降,施氮处理的幼苗根冠比显著低于对照组,但在不同施氮量下无显著差异;(2)净光合速率(Pn)和气孔导度在氮添加处理后显著提高,在施氮量为90 kg N·hm^(-2)·a^(-1)时达峰值,胞间CO_(2)浓度与Pn的变化方向相反,说明氮添加可以缓解植物的非气孔限制;(3)黄酮类化合物含量在施氮后呈现先增高后降低的趋势,施氮量30 kg N·hm^(-2)·a^(-1)为转折点;(4)施氮后,生长指标与光合指标呈显著正相关,类黄酮指数与光合指标呈显著负相关,净同化率、相对生长速率和黄酮类化合物指数变化符合生长-分化平衡假说;(5)硝酸铵处理相对单一态氮处理对幼苗的地上部分生长、气孔导度和花青素合成具有促进作用,硝酸钾处理下类黄酮指数显著提高。总的来说,东北红豆杉幼苗对氮添加的响应与施氮量和氮素类型有关,当氮添加为30~90 kg N·hm^(-2)·a^(-1)时,东北红豆杉幼苗的生长发育和防御水平较优,可作为东北红豆杉迁地保护或野外回归的参考措施。展开更多
A class of phenolic compounds, ortho-dihydroxyphenols (hereafter “o-DHP”), has been implicated with seed survival. Based on expectations of the growth-differentiation balance hypothesis, we predicted that seed o-DHP...A class of phenolic compounds, ortho-dihydroxyphenols (hereafter “o-DHP”), has been implicated with seed survival. Based on expectations of the growth-differentiation balance hypothesis, we predicted that seed o-DHP concentration exhibits a curvilinear response to increasing resource availability in the maternal environment, with maximum o-DHP occurring at moderate resource levels. To test this hypothesis, Abutilon theophrasti seeds were produced under field conditions at two locations. Each location included twelve maternal environments established through factorial combinations of soil compost (+/-), species assemblage (A. theophrasti with and without maize), and soil nitrogen fertilizer (0, 0.5× or 1× local recommendations for maize). Resource availability with respect to A. theophrasti growth was summarized by above-ground biomass at seed harvest (maternal biomass). Results indicated that seed o-DHP concentrations increased then decreased in response to increasing maternal biomass. This relationship was modeled with a unimodal function specific to location (Location 1, y = 1.18 + 0.03xe-0.02x, pseudo-R2 = 0.59, p = 0.003;Location 2, y = 1.40 + 0.006xe-0.005x;pseudo-R2 = 0.34, p = 0.05). Seed protein concentrations remained constant across maternal biomass levels. Because inherent vulnerability to predation and decay is considered a consequence of chemical protection relative to nutritional offering, our results suggest that A. theophrasti seed susceptibility to lethal attack is influenced by resource levels in the maternal environment. More broadly, our results suggest that the growth-differentiation balance hypothesis can be extended to maternal effects on seed phenolics.展开更多
文摘为探究氮添加对濒危植物东北红豆杉幼苗生长-防御权衡的影响,为该物种的保护工作提供理论依据,本研究以东北红豆杉4年生幼苗为对象,进行了3种氮源(硫酸铵、硝酸铵和硝酸钾)和4个施氮量(30、60、90、120 kg N·hm^(-2)·a^(-1))的氮添加实验。结果表明:(1)东北红豆杉幼苗的苗高增长量、地径增长量和总生物量随施氮量增加显著增加,施氮量超过90 kg N·hm^(-2)·a^(-1)后地径增长量和总生物量开始下降,施氮处理的幼苗根冠比显著低于对照组,但在不同施氮量下无显著差异;(2)净光合速率(Pn)和气孔导度在氮添加处理后显著提高,在施氮量为90 kg N·hm^(-2)·a^(-1)时达峰值,胞间CO_(2)浓度与Pn的变化方向相反,说明氮添加可以缓解植物的非气孔限制;(3)黄酮类化合物含量在施氮后呈现先增高后降低的趋势,施氮量30 kg N·hm^(-2)·a^(-1)为转折点;(4)施氮后,生长指标与光合指标呈显著正相关,类黄酮指数与光合指标呈显著负相关,净同化率、相对生长速率和黄酮类化合物指数变化符合生长-分化平衡假说;(5)硝酸铵处理相对单一态氮处理对幼苗的地上部分生长、气孔导度和花青素合成具有促进作用,硝酸钾处理下类黄酮指数显著提高。总的来说,东北红豆杉幼苗对氮添加的响应与施氮量和氮素类型有关,当氮添加为30~90 kg N·hm^(-2)·a^(-1)时,东北红豆杉幼苗的生长发育和防御水平较优,可作为东北红豆杉迁地保护或野外回归的参考措施。
文摘A class of phenolic compounds, ortho-dihydroxyphenols (hereafter “o-DHP”), has been implicated with seed survival. Based on expectations of the growth-differentiation balance hypothesis, we predicted that seed o-DHP concentration exhibits a curvilinear response to increasing resource availability in the maternal environment, with maximum o-DHP occurring at moderate resource levels. To test this hypothesis, Abutilon theophrasti seeds were produced under field conditions at two locations. Each location included twelve maternal environments established through factorial combinations of soil compost (+/-), species assemblage (A. theophrasti with and without maize), and soil nitrogen fertilizer (0, 0.5× or 1× local recommendations for maize). Resource availability with respect to A. theophrasti growth was summarized by above-ground biomass at seed harvest (maternal biomass). Results indicated that seed o-DHP concentrations increased then decreased in response to increasing maternal biomass. This relationship was modeled with a unimodal function specific to location (Location 1, y = 1.18 + 0.03xe-0.02x, pseudo-R2 = 0.59, p = 0.003;Location 2, y = 1.40 + 0.006xe-0.005x;pseudo-R2 = 0.34, p = 0.05). Seed protein concentrations remained constant across maternal biomass levels. Because inherent vulnerability to predation and decay is considered a consequence of chemical protection relative to nutritional offering, our results suggest that A. theophrasti seed susceptibility to lethal attack is influenced by resource levels in the maternal environment. More broadly, our results suggest that the growth-differentiation balance hypothesis can be extended to maternal effects on seed phenolics.