An efficient numerical simulation technique is introduced to extract the propagation characteristics of a millimeter guided wave structure. The method is based on the application of the Krylov subspace model order red...An efficient numerical simulation technique is introduced to extract the propagation characteristics of a millimeter guided wave structure. The method is based on the application of the Krylov subspace model order reduction technique (Padé via Lanczos) to the compact finite difference frequency domain (FDFD) method. This new technique speeds up the solution by decreasing the originally larger system matrix into one lower order system matrix. Numerical experiments from several millimeter guided wave structures demonstrate the efficiency and accuracy of this algorithm.展开更多
The characteristics of the periodic band gaps of the one dimension magnetized plasma photonic crystals are studied with the piecewise linear current density recursive convolution (PLCDRC) finite-differential time-doma...The characteristics of the periodic band gaps of the one dimension magnetized plasma photonic crystals are studied with the piecewise linear current density recursive convolution (PLCDRC) finite-differential time-domain (FDTD) method. In frequency-domain, the transmission coefficients of electromagnetic Gaussian pulses are computed, and the effects of the periodic structure constant, plasma layer thickness and parameters of plasma on the properties of periodic band gaps of magnetized photonic crystals are a...展开更多
先基于频域有限差分法和a-Si材料的有效吸收波长范围,利用光场分布、通光效率和有源层吸收谱等优化了有源层厚度为300 nm的a-Si电池用光学微腔陷光结构的缓冲层厚度和光学微腔通光孔尺寸,并对电池光电流密度谱、总电流密度和电池输出参...先基于频域有限差分法和a-Si材料的有效吸收波长范围,利用光场分布、通光效率和有源层吸收谱等优化了有源层厚度为300 nm的a-Si电池用光学微腔陷光结构的缓冲层厚度和光学微腔通光孔尺寸,并对电池光电流密度谱、总电流密度和电池输出参数进行了计算分析。研究表明:缓冲层厚度为2.6μm,通光孔直径Φ=D×0.8/8时,电池有源层具有最大的吸收效率;优化电池的短路电流为25.9225 m A/cm^2,优于其它陷光结构获得的短路电流。展开更多
文摘An efficient numerical simulation technique is introduced to extract the propagation characteristics of a millimeter guided wave structure. The method is based on the application of the Krylov subspace model order reduction technique (Padé via Lanczos) to the compact finite difference frequency domain (FDFD) method. This new technique speeds up the solution by decreasing the originally larger system matrix into one lower order system matrix. Numerical experiments from several millimeter guided wave structures demonstrate the efficiency and accuracy of this algorithm.
基金supported by the National Natural ScienceFoundation of China (Grant No. 60471002)
文摘The characteristics of the periodic band gaps of the one dimension magnetized plasma photonic crystals are studied with the piecewise linear current density recursive convolution (PLCDRC) finite-differential time-domain (FDTD) method. In frequency-domain, the transmission coefficients of electromagnetic Gaussian pulses are computed, and the effects of the periodic structure constant, plasma layer thickness and parameters of plasma on the properties of periodic band gaps of magnetized photonic crystals are a...
文摘先基于频域有限差分法和a-Si材料的有效吸收波长范围,利用光场分布、通光效率和有源层吸收谱等优化了有源层厚度为300 nm的a-Si电池用光学微腔陷光结构的缓冲层厚度和光学微腔通光孔尺寸,并对电池光电流密度谱、总电流密度和电池输出参数进行了计算分析。研究表明:缓冲层厚度为2.6μm,通光孔直径Φ=D×0.8/8时,电池有源层具有最大的吸收效率;优化电池的短路电流为25.9225 m A/cm^2,优于其它陷光结构获得的短路电流。