Anisotropic spatial variability of soil properties is frequently encountered in geotechnical engineering practice due to the complex depositional process.To quantitatively evaluate the response of slope failure relate...Anisotropic spatial variability of soil properties is frequently encountered in geotechnical engineering practice due to the complex depositional process.To quantitatively evaluate the response of slope failure related to anisotropic spatial variability of soil properties and reveal the underlying influence of anisotropic spatial variability of soil properties on the slope reliability,this study integrates the random finite difference method(RFDM)into a probabilistic assessment framework and adopts general spatial variability and a cohesive-frictional soil slope example for illustration.A parametric analysis is carried out to investigate the influence of general anisotropic spatial variability of soil properties on slope failure probability and failure characteristics.The results show that the directional angles of scales of fluctuation of general anisotropic spatial variability significantly affect the slope failure probability.The dominant failure mode is the intermediate type in most cases of general anisotropic spatial variability,which is distinguished from the shallow failure mode occurring in the homogenous state.Overestimation of cross-correlation between c and u(qc;u),scales of fluctuation(dmax and dmin)in general anisotropic spatially variable soils significantly influences the average slip mass volumes of deep and multi-slip failure mode.Compared with transverse anisotropic spatial variability,general anisotropic spatial variability significantly ampli-fies the effects of qc;u,dmax and dmin on slope reliability.展开更多
Background: Holistic thinking, which is rooted in Eastern culture, is assumed to be the core of traditional Chinese medicine (TCM). Recently, such holistic thinking has been proposed to be applicable to Western medici...Background: Holistic thinking, which is rooted in Eastern culture, is assumed to be the core of traditional Chinese medicine (TCM). Recently, such holistic thinking has been proposed to be applicable to Western medicine practices for alleviating serious side effects;however, the obscure and often ill-defined terms of TCM, such as qi, yin yang, and wuxing, pose considerable obstacles for further understanding TCM. In the present study, we explored whether and how TCM is actually related to the scientific construct of holistic thinking, to elucidate the particular cultural signature of TCM. Methods: A random sample of 101 college students majoring in TCM and 93 non-medical college students was recruited for the study. Two psychological scales—the Chinese Holistic Thinking Scale and the TCM Competence Scale were used respectively to measure the holistic thinking and participants’ ability to apply the TCM in practice. Results: We found that individuals who thought more holistically were better at applying TCM to modern medical problems. Interestingly, TCM was associated with holistic thinking in both TCM and non-medical students, suggesting that this association is intrinsic. Further exploration revealed that the association and variability facets of Eastern holistic thinking—which emphasize that the world is interconnected and ever-changing, respectively—significantly accounted for the individual differences in competence in utilizing TCM in practice. Conclusion: In short, our study provides the first empirical evidence linking TCM to the Eastern holistic thinking style, which not only deepens the understanding of TCM from a scientific perspective but also promotes dialogue between TCM and Western medicine for building safer and more effective health care systems.展开更多
The purpose of this paper is to broaden the knowledge of mean difference and, in particular, of an important distribution model known as truncated normal distribution, which is widely used in applied sciences and econ...The purpose of this paper is to broaden the knowledge of mean difference and, in particular, of an important distribution model known as truncated normal distribution, which is widely used in applied sciences and economics. In this work, we obtained the general formula of mean difference, which is not yet reported in literature, for the aforementioned distribution model and also for particular truncated cases.展开更多
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly...The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.展开更多
In Northeast Thailand, the climate change has resulted in erratic rainfall and tem- perature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study in...In Northeast Thailand, the climate change has resulted in erratic rainfall and tem- perature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study investigated the seasonal variation of vegetation greenness based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region. An assessment of the relationship between climate patterns and vegeta- tion conditions observed from NDVI was made. NDVI data were collected from year 2001 to 2009 using multi-temporal Terra MODIS Vegetation Indices Product (MOD13Q1). NDVI pro- files were developed to measure vegetation dynamics and variation according to land cover types. Meteorological information, i.e. rainfall and temperature, for a 30 year time span from 1980 to 2009 was analyzed for their patterns. Furthermore, the data taken from the period of 2001-2009, were digitally encoded into GIS database and the spatial patterns of monthly rainfall and temperature maps were generated based on kriging technique. The results showed a decreasing trend in NDVI values for both deciduous and evergreen forests. The highest productivity and biomass were observed in dry evergreen forests and the lowest in paddy fields. Temperature was found to be increasing slightly from 1980 to 2009 while no significant trends in rainfall amounts were observed. In dry evergreen forest, NDVI was not correlated with rainfall but was significant negatively correlated with temperature. These re- sults indicated that the overall productivity in dry evergreen forest was affected by increasing temperatures. A vegetation greenness model was developed from correlations between NDVI and meteorological data using linear regression. The model could be used to observe the change in vegetation greenness and dynamics affected by temperature and rainfall.展开更多
A high-resolution Arctic Ocean-Finite Volume Community Ocean Model(AO-FVCOM) and observational current data from 14 mooring stations in Bering Strait and surrounding regions between 1990 and 2015 were used to study th...A high-resolution Arctic Ocean-Finite Volume Community Ocean Model(AO-FVCOM) and observational current data from 14 mooring stations in Bering Strait and surrounding regions between 1990 and 2015 were used to study the seasonal and interannual variability of Bering Strait throughflow(BST). AO-FVCOM represented the BST with a climatological northward flux of 1.06 Sv, which was close to the observational mean of 0.94 ± 0.26 Sv. From the model results, the strongest volume flux was in summer, approximately 45% larger than that in winter. Interannual variability of BST was also indicated in the model results, and the maximum and minimum annual mean transports are in 2007 and 2012, respectively. AO-FVCOM showed larger differences from the observations in 2000, 2002, and 2015 than in other years, which may be related to the limitation of atmospheric forcing for the model. According to the driving mechanisms of BST, sea level difference(SLD) across the strait dominates the northward volume transport, and local wind is also important in forcing the seasonal variability of the BST and SLD patterns to change the BST indirectly.展开更多
The purpose of this paper is to broaden the knowledge of mean difference and,<span><span><span style="font-family:;" "=""> </span></span></span><span sty...The purpose of this paper is to broaden the knowledge of mean difference and,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in particular, of an important distribution model known as Tukey lambda, which is generally used to choose a model to fit data.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">We have obtained compact formulas, which are not yet reported in literature, of mean deviation and mean difference related to the said distribution model.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">These results made it possible to analyze the relationships among variability indexes, namely standard deviation, mean deviation and mean difference, regarding Tukey lambda model.</span></span></span>展开更多
基金the financial support from National Natural Science Foundation of China(No.52078086)Program of Distinguished Young Scholars,Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-jq0087)+1 种基金China Scholarship Council,China(CSC No.201906050237)Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-cxttX0003).
文摘Anisotropic spatial variability of soil properties is frequently encountered in geotechnical engineering practice due to the complex depositional process.To quantitatively evaluate the response of slope failure related to anisotropic spatial variability of soil properties and reveal the underlying influence of anisotropic spatial variability of soil properties on the slope reliability,this study integrates the random finite difference method(RFDM)into a probabilistic assessment framework and adopts general spatial variability and a cohesive-frictional soil slope example for illustration.A parametric analysis is carried out to investigate the influence of general anisotropic spatial variability of soil properties on slope failure probability and failure characteristics.The results show that the directional angles of scales of fluctuation of general anisotropic spatial variability significantly affect the slope failure probability.The dominant failure mode is the intermediate type in most cases of general anisotropic spatial variability,which is distinguished from the shallow failure mode occurring in the homogenous state.Overestimation of cross-correlation between c and u(qc;u),scales of fluctuation(dmax and dmin)in general anisotropic spatially variable soils significantly influences the average slip mass volumes of deep and multi-slip failure mode.Compared with transverse anisotropic spatial variability,general anisotropic spatial variability significantly ampli-fies the effects of qc;u,dmax and dmin on slope reliability.
文摘Background: Holistic thinking, which is rooted in Eastern culture, is assumed to be the core of traditional Chinese medicine (TCM). Recently, such holistic thinking has been proposed to be applicable to Western medicine practices for alleviating serious side effects;however, the obscure and often ill-defined terms of TCM, such as qi, yin yang, and wuxing, pose considerable obstacles for further understanding TCM. In the present study, we explored whether and how TCM is actually related to the scientific construct of holistic thinking, to elucidate the particular cultural signature of TCM. Methods: A random sample of 101 college students majoring in TCM and 93 non-medical college students was recruited for the study. Two psychological scales—the Chinese Holistic Thinking Scale and the TCM Competence Scale were used respectively to measure the holistic thinking and participants’ ability to apply the TCM in practice. Results: We found that individuals who thought more holistically were better at applying TCM to modern medical problems. Interestingly, TCM was associated with holistic thinking in both TCM and non-medical students, suggesting that this association is intrinsic. Further exploration revealed that the association and variability facets of Eastern holistic thinking—which emphasize that the world is interconnected and ever-changing, respectively—significantly accounted for the individual differences in competence in utilizing TCM in practice. Conclusion: In short, our study provides the first empirical evidence linking TCM to the Eastern holistic thinking style, which not only deepens the understanding of TCM from a scientific perspective but also promotes dialogue between TCM and Western medicine for building safer and more effective health care systems.
文摘The purpose of this paper is to broaden the knowledge of mean difference and, in particular, of an important distribution model known as truncated normal distribution, which is widely used in applied sciences and economics. In this work, we obtained the general formula of mean difference, which is not yet reported in literature, for the aforementioned distribution model and also for particular truncated cases.
基金supported by the foundation from:the program of the National Natural Science Foundation of China(40675037)the key program of the Sichuan Province Youth Science and Technology Fund(05ZQ026-023)the opening project of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences.
文摘The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.
基金supported by the Faculty of Engineering and the Higher Education Research Promotion and National Research University Project of ThailandOffice of the Higher Education Commission and the Faculty of Engineering,Khon Kaen University,Thailand
文摘In Northeast Thailand, the climate change has resulted in erratic rainfall and tem- perature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study investigated the seasonal variation of vegetation greenness based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region. An assessment of the relationship between climate patterns and vegeta- tion conditions observed from NDVI was made. NDVI data were collected from year 2001 to 2009 using multi-temporal Terra MODIS Vegetation Indices Product (MOD13Q1). NDVI pro- files were developed to measure vegetation dynamics and variation according to land cover types. Meteorological information, i.e. rainfall and temperature, for a 30 year time span from 1980 to 2009 was analyzed for their patterns. Furthermore, the data taken from the period of 2001-2009, were digitally encoded into GIS database and the spatial patterns of monthly rainfall and temperature maps were generated based on kriging technique. The results showed a decreasing trend in NDVI values for both deciduous and evergreen forests. The highest productivity and biomass were observed in dry evergreen forests and the lowest in paddy fields. Temperature was found to be increasing slightly from 1980 to 2009 while no significant trends in rainfall amounts were observed. In dry evergreen forest, NDVI was not correlated with rainfall but was significant negatively correlated with temperature. These re- sults indicated that the overall productivity in dry evergreen forest was affected by increasing temperatures. A vegetation greenness model was developed from correlations between NDVI and meteorological data using linear regression. The model could be used to observe the change in vegetation greenness and dynamics affected by temperature and rainfall.
基金supported by the National Program on Key Basic Research Project of China (No. 2015CB95 3902)the National Natural Science Foundation of China (Nos. 41276197 and 41706210)+1 种基金the National Key Research and Development Program of China (No. 2016 YFC1400903)support of various institutions with programs and grants to deploy mooring and achieve data
文摘A high-resolution Arctic Ocean-Finite Volume Community Ocean Model(AO-FVCOM) and observational current data from 14 mooring stations in Bering Strait and surrounding regions between 1990 and 2015 were used to study the seasonal and interannual variability of Bering Strait throughflow(BST). AO-FVCOM represented the BST with a climatological northward flux of 1.06 Sv, which was close to the observational mean of 0.94 ± 0.26 Sv. From the model results, the strongest volume flux was in summer, approximately 45% larger than that in winter. Interannual variability of BST was also indicated in the model results, and the maximum and minimum annual mean transports are in 2007 and 2012, respectively. AO-FVCOM showed larger differences from the observations in 2000, 2002, and 2015 than in other years, which may be related to the limitation of atmospheric forcing for the model. According to the driving mechanisms of BST, sea level difference(SLD) across the strait dominates the northward volume transport, and local wind is also important in forcing the seasonal variability of the BST and SLD patterns to change the BST indirectly.
文摘The purpose of this paper is to broaden the knowledge of mean difference and,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in particular, of an important distribution model known as Tukey lambda, which is generally used to choose a model to fit data.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">We have obtained compact formulas, which are not yet reported in literature, of mean deviation and mean difference related to the said distribution model.</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">These results made it possible to analyze the relationships among variability indexes, namely standard deviation, mean deviation and mean difference, regarding Tukey lambda model.</span></span></span>