期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method 被引量:2
1
作者 Serigne Bira Gueye 《Journal of Electromagnetic Analysis and Applications》 2014年第10期303-308,共6页
A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. T... A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena. 展开更多
关键词 1D POISSON equation Finite difference Method TRIDIAGONAL matrix INVERSION Thomas Algorithm GAUSSIAN ELIMINATION Potential Problem
下载PDF
An Efficient Direct Method to Solve the Three Dimensional Poisson’s Equation 被引量:2
2
作者 Alemayehu Shiferaw Ramesh Chand Mittal 《American Journal of Computational Mathematics》 2011年第4期285-293,共9页
In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is appr... In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula. 展开更多
关键词 Poisson’s equation Finite difference METHOD Tri-diagonal matrix Hockney’s METHOD Thomas Algorithm
下载PDF
Efficient BTCS + CTCS Finite Difference Scheme for General Linear Second Order PDE 被引量:1
3
作者 Gueye Serigne Bira Mbow Cheikh Diagana Mouhamed Fadel 《Journal of Electromagnetic Analysis and Applications》 2021年第10期135-143,共9页
This work deals with a second order linear general equation with partial derivatives for a two-variable function. It covers a wide range of applications. This equation is solved with a finite difference hybrid method:... This work deals with a second order linear general equation with partial derivatives for a two-variable function. It covers a wide range of applications. This equation is solved with a finite difference hybrid method: BTCS + CTCS. This scheme is simple, precise, and economical in terms of time and space occupancy in memory. 展开更多
关键词 Finite difference BCTS + CTCS Usmani’s Algorithm Tridiagonal matrix Telegraph equation
下载PDF
Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations
4
作者 Xijian Wang 《American Journal of Computational Mathematics》 2015年第2期113-126,共14页
The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dom... The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods. 展开更多
关键词 Finite difference METHOD CONVECTION-DIFFUSION equation DISCRETIZATION matrix ITERATIVE METHOD CONVERGENCE Speed
下载PDF
Solution of 1D Poisson Equation with Neumann-Dirichlet and Dirichlet-Neumann Boundary Conditions, Using the Finite Difference Method
5
作者 Serigne Bira Gueye Kharouna Talla Cheikh Mbow 《Journal of Electromagnetic Analysis and Applications》 2014年第10期309-318,共10页
An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;usi... An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Dirichlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equation in quasi-stationary regime;using the finite difference method, in one dimensional case. Two novels matrices are determined allowing a direct and exact formulation of the solution of the Poisson equation. Verification is also done considering an interesting potential problem and the sensibility is determined. This new method has an algorithm complexity of O(N), its truncation error goes like O(h2), and it is more precise and faster than the Thomas algorithm. 展开更多
关键词 1D POISSON equation Finite difference Method Neumann-Dirichlet Dirichlet-Neumann Boundary Problem TRIDIAGONAL matrix Inversion Thomas Algorithm
下载PDF
Exact Solution of a Linear Difference Equation in a Finite Number of Steps
6
作者 Albert Iskhakov Sergey Skovpen 《Applied Mathematics》 2018年第3期287-290,共4页
An exact solution of a linear difference equation in a finite number of steps has been obtained. This refutes the conventional wisdom that a simple iterative method for solving a system of linear algebraic equations i... An exact solution of a linear difference equation in a finite number of steps has been obtained. This refutes the conventional wisdom that a simple iterative method for solving a system of linear algebraic equations is approximate. The nilpotency of the iteration matrix is the necessary and sufficient condition for getting an exact solution. The examples of iterative equations providing an exact solution to the simplest algebraic system are presented. 展开更多
关键词 LINEAR difference equation EXACT ITERATIVE Solution of a System of LINEAR ALGEBRAIC equations NILPOTENT matrix
下载PDF
动态投入产出理论的扩充及其方程解
7
作者 肖常纪 《武汉水运工程学院学报》 1990年第1期82-92,共11页
本文首先给出经典动态投入产出体系的差分方程组矩阵形式的求解公式,然后引入二阶资本结构矩阵及含有二阶投资的动态投入产出体系的差分方程组及其矩阵形式,并求得其求解公式。最后把所得的方程及其求解公式推广到有关矩阵的各元素依赖... 本文首先给出经典动态投入产出体系的差分方程组矩阵形式的求解公式,然后引入二阶资本结构矩阵及含有二阶投资的动态投入产出体系的差分方程组及其矩阵形式,并求得其求解公式。最后把所得的方程及其求解公式推广到有关矩阵的各元素依赖于时间t的场合。 展开更多
关键词 差分方程 向量 矩阵 投入产出理论
下载PDF
Geometric grid network and third-order compact scheme for solving nonlinear variable coefficients 3D elliptic PDEs
8
作者 Navnit Jha Venu Gopal Bhagat Singh 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第6期72-99,共28页
By using nonuniform(geometric)grid network,a new high-order finite-difference compact scheme has been obtained for the numerical solution of three-space dimensions partial differential equations of elliptic type.Singl... By using nonuniform(geometric)grid network,a new high-order finite-difference compact scheme has been obtained for the numerical solution of three-space dimensions partial differential equations of elliptic type.Single cell discretization to the elliptic equation makes it easier to compute and exhibit stability of the numerical solutions.The monotone and irreducible property of the Jacobian matrix to the system of difference equations analyses the converging behavior of the numerical solution values.As an experiment,applications of the compact scheme to Schr¨odinger equations,sine-Gordon equations,elliptic Allen–Cahn equation and Poisson’s equation have been presented with root mean squared errors of exact and approximate solution values.The results corroborate the reliability and efficiency of the scheme. 展开更多
关键词 Finite-difference method nonuniform grid compact operator monotone matrix sine-Gordon equation elliptic Allen-Cahn equation.
原文传递
二维热传导方程隐式差分格式系数矩阵特征值的求取
9
作者 冯凤萍 周瑞芬 《大庆石油学院学报》 CAS 北大核心 2005年第3期88-89,93,127,共4页
给出了二维热传导方程隐式差分格式.对该差分格式的未知量和右端项以矩阵形式表示,可得出差分格式的矩阵表示新形式.原系数矩阵的特征值和特征向量的求取变得简便,为进一步分析差分格式的稳定性和利用迭代法求该类线性方程组时的收敛速... 给出了二维热传导方程隐式差分格式.对该差分格式的未知量和右端项以矩阵形式表示,可得出差分格式的矩阵表示新形式.原系数矩阵的特征值和特征向量的求取变得简便,为进一步分析差分格式的稳定性和利用迭代法求该类线性方程组时的收敛速度分析奠定了基础. 展开更多
关键词 隐式差分格式 矩阵特征值 稳定性 二维热传导方程
下载PDF
加热器端差对汽轮机组回热系统损分布影响的通用计算模型
10
作者 曾庆华 于淑梅 +1 位作者 周雪斌 韩彦广 《热力发电》 CAS 北大核心 2012年第1期21-25,30,共6页
以基于熵分析法的回热系统损分布矩阵方程及汽水分布矩阵方程为基础,结合某台300MW汽轮机组回热系统,进行了数学推导与归纳,获得了加热器端差变化对回热系统损分布影响的通用计算模型。该模型只需要通过加热器出口水参数及上级加热... 以基于熵分析法的回热系统损分布矩阵方程及汽水分布矩阵方程为基础,结合某台300MW汽轮机组回热系统,进行了数学推导与归纳,获得了加热器端差变化对回热系统损分布影响的通用计算模型。该模型只需要通过加热器出口水参数及上级加热器疏水参数的偏差值,即可准确快捷地计算出回热系统的损分布变化,且具有良好的适应性与通用性,同时也便于在线定量分析端差变化对回热系统损分布的影响。 展开更多
关键词 300MW汽轮机组 回热系统 加热器 端差 矩阵方程 损分布 疏水
下载PDF
由整数有限域矩阵方程实现的数字图像分存技术
11
作者 严深海 黄贤通 《赣南师范学院学报》 2013年第3期56-59,共4页
基于整数有限域矩阵方程的两类矩阵的唯一解求解问题,结合能实现秘密共享的Differ-Hellman协议,设计了一种数字图像分存方案,数值实验实现了灰度值图像及彩色图像的分存和重构.
关键词 有限域 整数矩阵方程 differ-Hellman协议 图像分存
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部