MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after th...MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after the treatment in 100 ppm SO2/air at 350 °C for 50 h. The formation of manganese sulfate and especially cerium sulfate reduced the availability of surface active metal oxides, blocked the pore structure and decreased the surface area of the catalyst. These changes in chemical and structural and textural properties resulted in a severe loss in the activities of the sulfated catalyst for NO and soot oxidation. The decomposition of sulfates was almost complete during the calcina-tion in air at 800 °C for 30 min, which partially recovered the surface active sites and the catalyst surface area despite the significant sintering of metal oxides. Consequently, the NOx-assisted soot oxidation activity of the catalyst was regenerated to some extent by the oxidation treatment.展开更多
MnOx(0.4)-CeO2 was investigated for soot oxidation assisted with a pulse dielectric barrier discharge (DBD). The catalysts were evaluated and characterized with TPO (temperature programmed oxidation), X-ray diff...MnOx(0.4)-CeO2 was investigated for soot oxidation assisted with a pulse dielectric barrier discharge (DBD). The catalysts were evaluated and characterized with TPO (temperature programmed oxidation), X-ray diffraction (XRD), Raman and X-ray photo- electron spectroscopy (XPS). The ignition temperature Ti for soot oxidation decreased from 240.8 to 216.4 ℃ with the increase of the pulse DBD frequencies from 50 to 400 Hz, lower than that of the case without pulse DBD present (253.4 ℃). The results of XRD, Raman and XPS agreed well with the TPO activities of MnOx(0.4)-CeO2 towards soot oxidation. More solid solution of ceria and manganese, and surface reactive species including 02 , O and Mn4+ were responsible for the enhancement of soot oxidation due to pulse DBD injection in the present study. For solid solution favors to the activation and transformation of those species, which are be- lieved to be involved in the soot oxidation in a hybrid catalysis-plasma.展开更多
A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalyst...A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot.展开更多
Diesel soot aggregates emitted from a model dynamometer and 11 on-road vehicles were segregated by a micro-orifice uniform deposit impactor (MOUDI). The elemental contents and morphological parameters of the aggrega...Diesel soot aggregates emitted from a model dynamometer and 11 on-road vehicles were segregated by a micro-orifice uniform deposit impactor (MOUDI). The elemental contents and morphological parameters of the aggregates were then examined by scanning electron microscopy coupled with an energy dispersive spectrometer (SEM-EDS), and combined with a fractional Brownian motion (fBm) processor. Two mode-size distributions of aggregates collected from diesel vehicles were confirmed. Mean mass concentration of 339 mg/m3 (dC/dlogdp) existed in the dominant mode (180-320 nm). A relatively high proportion of these aggregates appeared in PM 1, accentuating the relevance regarding adverse health effects. Furthermore, the fBm processor directly parameterized the SEM images of fractal like aggregates and successfully quantified surface texture to extract Hurst coefficients (H) of the aggregates. For aggregates from vehicles equipped with a universal cylinder number, the H value was independent of engine operational conditions. A small H value existed in emitted aggregates from vehicles with a large number of cylinders. This study found that aggregate fractal dimension related to H was in the range of 1.641-1.775, which is in agreement with values reported by previous TEM-based experiments. According to EDS analysis, carbon content ranged in a high level of 30%-50% by weight for diesel soot aggregates. The presence of Na and Mg elements in these sampled aggregates indicated the likelihood that some engine enhancers composed of biofuel or surfactants were commonly used in on-road vehicles in Taiwan. In particular, the morphological H combined with carbon content detection can be useful for characterizing chain-like or cluster diesel soot aggregates in the atmosphere.展开更多
The V-K catalysts were produced on porous α-alumina substrate by a solution impregnation route and the compositions and catalytic activities for soot oxidation were studied by XRD, TG/DTG, DSC and TPR. According to t...The V-K catalysts were produced on porous α-alumina substrate by a solution impregnation route and the compositions and catalytic activities for soot oxidation were studied by XRD, TG/DTG, DSC and TPR. According to the catalytic activity studies, the catalytic activity of the crystalline phases is in the order: KNO3+KVO3〉K3V5O14+KVO3. The appearance of excessive KHCO3 phase will lead to the deterioration of catalytic activity when the catalysts contain higher KNO3 content. It is also found that when the K∶V molar ratio is higher than 1∶1, the prepared catalysts show a strong CO2 absorption characteristic and this behavior will become gradually significant with the increasing of K∶V molar ratio. Considerable amount of absorbed CO2 are strongly bonded to the crystal lattice with onset desorption temperature of 200 ℃.展开更多
The diesel soot was collected from diesel engine exhaust pipe. The morphology and structure of the collected diesel soot was characterized by HRTEM, XRD and XPS and its tribological behavior was investigated by a SRV ...The diesel soot was collected from diesel engine exhaust pipe. The morphology and structure of the collected diesel soot was characterized by HRTEM, XRD and XPS and its tribological behavior was investigated by a SRV IV oscillating reciprocating friction and wear tester. Test results showed that the tribological behavior of diesel soot was largely influenced by the test load. Under a low load, the diesel soot could reduce the wear volume of the disc. While under a high load, the diesel soot could reduce the friction coefficient of base oil. Based on the characterization of the worn scars by the SEM technique, the 3D surface profiler and the Raman spectroscopy, it was assumed that the core-shell structure of diesel soot with several graphitic layers played important roles. On one hand, its spherical and special structure could make it roll between friction pairs to reduce wear under a low load. On the other hand, its outer-shell graphite layers could be peeled off to form lubrication film to reduce friction under a high load and shear force.展开更多
基金Project supported by National Natural Science Foundation of China (51072096)National Program on Key Basic Research Project (973 program)(2010CB732304)
文摘MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after the treatment in 100 ppm SO2/air at 350 °C for 50 h. The formation of manganese sulfate and especially cerium sulfate reduced the availability of surface active metal oxides, blocked the pore structure and decreased the surface area of the catalyst. These changes in chemical and structural and textural properties resulted in a severe loss in the activities of the sulfated catalyst for NO and soot oxidation. The decomposition of sulfates was almost complete during the calcina-tion in air at 800 °C for 30 min, which partially recovered the surface active sites and the catalyst surface area despite the significant sintering of metal oxides. Consequently, the NOx-assisted soot oxidation activity of the catalyst was regenerated to some extent by the oxidation treatment.
基金supported by National Natural Science Foundation of China(51108187,50978103,21207039)Guangdong High Education Engineering Technology Research Center for Air Pollution Control Program(GCZX-A0903)the Fundamental Research Funds for the Central Universities(2012ZM0041)
文摘MnOx(0.4)-CeO2 was investigated for soot oxidation assisted with a pulse dielectric barrier discharge (DBD). The catalysts were evaluated and characterized with TPO (temperature programmed oxidation), X-ray diffraction (XRD), Raman and X-ray photo- electron spectroscopy (XPS). The ignition temperature Ti for soot oxidation decreased from 240.8 to 216.4 ℃ with the increase of the pulse DBD frequencies from 50 to 400 Hz, lower than that of the case without pulse DBD present (253.4 ℃). The results of XRD, Raman and XPS agreed well with the TPO activities of MnOx(0.4)-CeO2 towards soot oxidation. More solid solution of ceria and manganese, and surface reactive species including 02 , O and Mn4+ were responsible for the enhancement of soot oxidation due to pulse DBD injection in the present study. For solid solution favors to the activation and transformation of those species, which are be- lieved to be involved in the soot oxidation in a hybrid catalysis-plasma.
文摘A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot.
基金supported by the "National"Science Council of Taiwan, China (No. NSC 92-2211-E-241-008,96-2221-E-241-011-MY3)
文摘Diesel soot aggregates emitted from a model dynamometer and 11 on-road vehicles were segregated by a micro-orifice uniform deposit impactor (MOUDI). The elemental contents and morphological parameters of the aggregates were then examined by scanning electron microscopy coupled with an energy dispersive spectrometer (SEM-EDS), and combined with a fractional Brownian motion (fBm) processor. Two mode-size distributions of aggregates collected from diesel vehicles were confirmed. Mean mass concentration of 339 mg/m3 (dC/dlogdp) existed in the dominant mode (180-320 nm). A relatively high proportion of these aggregates appeared in PM 1, accentuating the relevance regarding adverse health effects. Furthermore, the fBm processor directly parameterized the SEM images of fractal like aggregates and successfully quantified surface texture to extract Hurst coefficients (H) of the aggregates. For aggregates from vehicles equipped with a universal cylinder number, the H value was independent of engine operational conditions. A small H value existed in emitted aggregates from vehicles with a large number of cylinders. This study found that aggregate fractal dimension related to H was in the range of 1.641-1.775, which is in agreement with values reported by previous TEM-based experiments. According to EDS analysis, carbon content ranged in a high level of 30%-50% by weight for diesel soot aggregates. The presence of Na and Mg elements in these sampled aggregates indicated the likelihood that some engine enhancers composed of biofuel or surfactants were commonly used in on-road vehicles in Taiwan. In particular, the morphological H combined with carbon content detection can be useful for characterizing chain-like or cluster diesel soot aggregates in the atmosphere.
基金Funded by the Foundation for Scientific Research Encouragement to Middle-aged and Young Scientists of Shandong Province (No. 2007BS04003)
文摘The V-K catalysts were produced on porous α-alumina substrate by a solution impregnation route and the compositions and catalytic activities for soot oxidation were studied by XRD, TG/DTG, DSC and TPR. According to the catalytic activity studies, the catalytic activity of the crystalline phases is in the order: KNO3+KVO3〉K3V5O14+KVO3. The appearance of excessive KHCO3 phase will lead to the deterioration of catalytic activity when the catalysts contain higher KNO3 content. It is also found that when the K∶V molar ratio is higher than 1∶1, the prepared catalysts show a strong CO2 absorption characteristic and this behavior will become gradually significant with the increasing of K∶V molar ratio. Considerable amount of absorbed CO2 are strongly bonded to the crystal lattice with onset desorption temperature of 200 ℃.
基金the financial support of the Logistics Key Basic Research Program of PLA (BX214C006)the Chongqing Science and Technology Achievement Transformation Fund (KJZH17139)
文摘The diesel soot was collected from diesel engine exhaust pipe. The morphology and structure of the collected diesel soot was characterized by HRTEM, XRD and XPS and its tribological behavior was investigated by a SRV IV oscillating reciprocating friction and wear tester. Test results showed that the tribological behavior of diesel soot was largely influenced by the test load. Under a low load, the diesel soot could reduce the wear volume of the disc. While under a high load, the diesel soot could reduce the friction coefficient of base oil. Based on the characterization of the worn scars by the SEM technique, the 3D surface profiler and the Raman spectroscopy, it was assumed that the core-shell structure of diesel soot with several graphitic layers played important roles. On one hand, its spherical and special structure could make it roll between friction pairs to reduce wear under a low load. On the other hand, its outer-shell graphite layers could be peeled off to form lubrication film to reduce friction under a high load and shear force.