The La1?xMx MnO3(M=Li, Na, K, Rb, x=0, 0.10, 0.25) perovskite-type oxides whose sizes are nanoparticle have been prepared by the citric acid-ligated method. The characters of the catalysts were characterized by means ...The La1?xMx MnO3(M=Li, Na, K, Rb, x=0, 0.10, 0.25) perovskite-type oxides whose sizes are nanoparticle have been prepared by the citric acid-ligated method. The characters of the catalysts were characterized by means of XRD, IR, SEM and BET surface area measurement. The catalytic activity for the combustion of soot particulate was evaluated by a technique of the temperature-programmed reaction. In the LaMnO3 catalyst, the partial substitution of alkali metal (Li, Na, K, Rb) into A-site enhanced the catalytic activity for the combustion of soot particle. The La0.75K0.25MnO3 oxides are good candidate catalysts for the soot particle removal reaction, and the combustion tem- peratures of soot particle are between 285℃ and 430℃ when the contact of catalysts and soot is loose, and their catalytic activities for the combustion of soot particle are as good as supported Pt catalysts, which is the best catalyst system so far reported for soot combustion under loose con- tact conditions.展开更多
A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx)from diesel engine exhaust operated under different load conditions. Initial studies were focused onplasma reactor (a dielectric barrier disc...A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx)from diesel engine exhaust operated under different load conditions. Initial studies were focused onplasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at varioustemperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust wastreated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust wastreated. Studies were then made with plasma reactor combined with a catalytic reactor consisting ofa selective catalytic reduction (SCR) catalyst, V_2O_5/TiO_2. Ammonia was used as a reducing agentfor SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCRcatalytic reactor below 200℃. The plasma-assisted catalytic reactor was operated well to remove NOxunder no-load and load conditions. For an energy input of 96 J/l, the NOx removal efficienciesobtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperatureof 100 ℃.展开更多
基金supported by the National Basic Research Program of China (973 Program 2010CB732304)+5 种基金the National High Technology Research and Development Program of China (863 Program 2013AA065301)the National Natural Science Foundation of China (51308296 51108446)the Fundamental Research Funds for the Central Universities (30920140111012)the Qing Lan Project of Jiangsu Province~~
基金supported by the National Natural Science Foundation of China(Grant No.20473053)the Scientific Research Key Foundation for the Returned Overseas Chinese Scholars of State Education Ministry.
文摘The La1?xMx MnO3(M=Li, Na, K, Rb, x=0, 0.10, 0.25) perovskite-type oxides whose sizes are nanoparticle have been prepared by the citric acid-ligated method. The characters of the catalysts were characterized by means of XRD, IR, SEM and BET surface area measurement. The catalytic activity for the combustion of soot particulate was evaluated by a technique of the temperature-programmed reaction. In the LaMnO3 catalyst, the partial substitution of alkali metal (Li, Na, K, Rb) into A-site enhanced the catalytic activity for the combustion of soot particle. The La0.75K0.25MnO3 oxides are good candidate catalysts for the soot particle removal reaction, and the combustion tem- peratures of soot particle are between 285℃ and 430℃ when the contact of catalysts and soot is loose, and their catalytic activities for the combustion of soot particle are as good as supported Pt catalysts, which is the best catalyst system so far reported for soot combustion under loose con- tact conditions.
文摘A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx)from diesel engine exhaust operated under different load conditions. Initial studies were focused onplasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at varioustemperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust wastreated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust wastreated. Studies were then made with plasma reactor combined with a catalytic reactor consisting ofa selective catalytic reduction (SCR) catalyst, V_2O_5/TiO_2. Ammonia was used as a reducing agentfor SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCRcatalytic reactor below 200℃. The plasma-assisted catalytic reactor was operated well to remove NOxunder no-load and load conditions. For an energy input of 96 J/l, the NOx removal efficienciesobtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperatureof 100 ℃.