Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in...Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.展开更多
基金supported by the Research Pund of Hubei Provincial Department of Education of China (No.Q20081505)
文摘Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.