Low-cost Global Navigation Satellite System(GNSS)devices offer a cost-effective alternative to traditional GNSS systems,making GNSS technology accessible to a wider range of applications.Nevertheless,low-cost GNSS dev...Low-cost Global Navigation Satellite System(GNSS)devices offer a cost-effective alternative to traditional GNSS systems,making GNSS technology accessible to a wider range of applications.Nevertheless,low-cost GNSS devices often face the challenges in effectively capturing and tracking satellite signals,which leads to losing the observations at certain frequencies.Moreover,the observation peculiarities of low-cost devices are in contradistinction to those of traditional geodetic GNSS receivers.In this contribution,a low-cost PPP-RTK model that considers the unique characteristics of different types of measurements is developed and its performance is fully evaluated with u-blox F9P receivers equipped with three distinctive antenna configurations:vertical dipole,microstrip patch,and helix antennas.Several static and kinematic experiments in different scenarios are conducted to verify the effectiveness of the proposed method.The results indicate that the mixed-frequency PPP-RTK model outperforms the traditional dual-frequency one with higher positioning accuracy and fixing percentage.Among the three low-cost antennas tested,the vertical dipole antenna demonstrates the best performance under static conditions and shows a comparable performance as geodetic antennas with a positioning accuracy of 0.02 m,0.01 m and 0.07 m in the east,north,and up components,respectively.Under low-speed kinematic scenarios,the helix antenna outperforms the other two with a positioning accuracy of(0.07 m,0.07 m,0.34 m).Furthermore,the helix antenna is also proved to be the best choice for vehicle navigation with an ambiguity fixing rate of over 95%and a positioning accuracy of(0.13 m,0.14 m,0.36 m).展开更多
We demonstrate the use of stochastic collocation to assess the performance of photonic devices under the effect of uncertainty. This approach combines high accuracy and efficiency in analyzing device variability with ...We demonstrate the use of stochastic collocation to assess the performance of photonic devices under the effect of uncertainty. This approach combines high accuracy and efficiency in analyzing device variability with the ease of implementation of sampling-based methods. Its flexibility makes it suitable to be applied to a large range of photonic devices. We compare the stochastic collocation method with a Monte Carlo technique on a numerical analysis of the variability in silicon directional couplers.展开更多
基金National Natural Science Foundation of China,41974027,Xingxing Li42204017,Xin Li+2 种基金National Postdoctoral Program for Innovative Talents,China,BX20220239,Xin Lithe special fund of Hubei Luojia Laboratory,220100006,Xin Lithe Fundamental Research Funds for the Central Universities,2042022kf1001,Xin Li.
文摘Low-cost Global Navigation Satellite System(GNSS)devices offer a cost-effective alternative to traditional GNSS systems,making GNSS technology accessible to a wider range of applications.Nevertheless,low-cost GNSS devices often face the challenges in effectively capturing and tracking satellite signals,which leads to losing the observations at certain frequencies.Moreover,the observation peculiarities of low-cost devices are in contradistinction to those of traditional geodetic GNSS receivers.In this contribution,a low-cost PPP-RTK model that considers the unique characteristics of different types of measurements is developed and its performance is fully evaluated with u-blox F9P receivers equipped with three distinctive antenna configurations:vertical dipole,microstrip patch,and helix antennas.Several static and kinematic experiments in different scenarios are conducted to verify the effectiveness of the proposed method.The results indicate that the mixed-frequency PPP-RTK model outperforms the traditional dual-frequency one with higher positioning accuracy and fixing percentage.Among the three low-cost antennas tested,the vertical dipole antenna demonstrates the best performance under static conditions and shows a comparable performance as geodetic antennas with a positioning accuracy of 0.02 m,0.01 m and 0.07 m in the east,north,and up components,respectively.Under low-speed kinematic scenarios,the helix antenna outperforms the other two with a positioning accuracy of(0.07 m,0.07 m,0.34 m).Furthermore,the helix antenna is also proved to be the best choice for vehicle navigation with an ambiguity fixing rate of over 95%and a positioning accuracy of(0.13 m,0.14 m,0.36 m).
文摘We demonstrate the use of stochastic collocation to assess the performance of photonic devices under the effect of uncertainty. This approach combines high accuracy and efficiency in analyzing device variability with the ease of implementation of sampling-based methods. Its flexibility makes it suitable to be applied to a large range of photonic devices. We compare the stochastic collocation method with a Monte Carlo technique on a numerical analysis of the variability in silicon directional couplers.