Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper...Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.展开更多
Global effects caused by the detonation of an IED near a military vehicle induce subsequent severe acceleration effects on the vehicle occupants.Two concepts to minimize these global effects were developed,with the he...Global effects caused by the detonation of an IED near a military vehicle induce subsequent severe acceleration effects on the vehicle occupants.Two concepts to minimize these global effects were developed,with the help of a combined method based on a scaled experimental technology and numerical simulations.The first concept consists in the optimization of the vehicle shape to reduce the momentum transfer and thus the occupant loading.Three scaled V-shaped vehicles with different ground clearances were built and compared to a reference vehicle equipped with a flat floor.The second concept,called dynamic impulse compensation(DIC),is based on a momentum compensation technique.The principal possibility of this concept was demonstrated on a scaled vehicle.In addition,the numerical simulations have been performed with generic full size vehicles including dummy models,proving the capability of the DIC technology to reduce the occupant loading.展开更多
基金supported by the National Natural Science Foundation of China[No.51978166]。
文摘Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.
基金Herr TRDir K.Husing from the German test range WTD-91 GF-440 in MeppenHerr TRDir K.Neugebauer from BAAINBw
文摘Global effects caused by the detonation of an IED near a military vehicle induce subsequent severe acceleration effects on the vehicle occupants.Two concepts to minimize these global effects were developed,with the help of a combined method based on a scaled experimental technology and numerical simulations.The first concept consists in the optimization of the vehicle shape to reduce the momentum transfer and thus the occupant loading.Three scaled V-shaped vehicles with different ground clearances were built and compared to a reference vehicle equipped with a flat floor.The second concept,called dynamic impulse compensation(DIC),is based on a momentum compensation technique.The principal possibility of this concept was demonstrated on a scaled vehicle.In addition,the numerical simulations have been performed with generic full size vehicles including dummy models,proving the capability of the DIC technology to reduce the occupant loading.